¹⁸ Кинетика роста графеновых и графитовых пленок на поверхности (1010) Re

© Е.В. Рутьков, Н.Р. Галль, Н.Д. Потехина

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: gall@ms.ioffe.ru

(Поступила в Редакцию 3 декабря 2013 г.)

Исследована кинетика роста графеновых и графитовых слоев на поверхности насыщенного углеродом рения. Получено хорошее согласие данных эксперимента с результатами математического анализа диффузионных процессов в объеме металла с участием атомов углерода с последующим выделением его на поверхности. Установлено, что в области температур 1300–1500 К можно выращивать графеновые слои на металле строго заданной толщины в диапазоне 1–50 слоев.

1. Введение

В связи с большим интересом к графену встает важный вопрос о выращивании графеновых слоев определенной толщины, так как свойства пленок существенно зависят от количества слоев графена в них [1,2].

Одним из способов выращивания таких пленок является их формирование на поверхности металлов и непроводящих карбидов с последующим удалением подложки, например, путем травления металла [3–10].

Система рений-углерод была нами подробно исследована в работах [10–12]. В настоящей работе изучается кинетика образования пленок графена на $\text{Re}(10\overline{1}0)$ при температурах T = 1250-1700 K.

2. Методика эксперимента

Эксперименты проводились в сверхвысоковакуумном Оже-спектрометре высокого разрешения ($\Delta E/E \sim 0.1\%$) с дополнительным модулем, позволяющим применять для диагностики поверхности образцов метод термоэлектронной эмиссии и метод зондирования поверхности молекулами CsCl для определения относительной площади графеновых островков [10].

В качестве подложки использовались текстурированные рениевые ленты размером $50 \times 1.5 \times 0.02 \,\mathrm{mm}$ с гранью (1010) на поверхности, однородные по работе выхода $e\varphi = 5.15 \,\mathrm{eV}$. Методика очистки лент от примесей и выведения грани на поверхность была стандартной [10,11]. По данным рентгеновской дифракции степень ориентации грани (1010) по отношению к поверхности образца составляла 99.9%.

Насыщение рения углеродом производилось в парах бензола, напускаемых в камеру из специальной системы напуска при давлении $P_{C_6H_6} = 1 \cdot 10^{-5}$ Torr и температуре $T_C = 1900-2050$ К. Процесс насыщения углеродом заканчивался "автоматически" при образовании сплошного слоя графена на рении, так как на пассивной поверхности сплошного слоя графена молекулы C_6H_6 ,

поставляющие атомы углерода для их перехода с поверхности в объем, перестают диссоциировать [11]. Метод электронной Оже-спектроскопии (AES) позволяет по форме Оже-спектра установить, что образовалась действительно графеновая пленка углерода толщиной в один слой [10]. Метод зондирования поверхности молекулами CsCl показывает, что пленка сплошная [11]. Прямые опыты с применением сканирующей туннельной микроскопии также подтвердили графеновую структуру пленки и ее непрерывность [13].

Экспериментальное изучение кинетики роста графеновых и графитовых пленок на Re(1010)

Атомы углерода активно и в заметных количествах растворяются в объеме рения [14]. Для области температур 1500–2100 К с использованием калиброванных потоков в настоящей работе была определена предельная растворимость $n_{\rm C}$ (at.%) атомов углерода в рении: $\lg n_{\rm C}$ (at.%) = 2.48 – $\frac{4000}{T}$, где температура измеряется в градусах Кельвина [15]. Критерием достижения предельной растворимости служило образование новой фазы углерода — графеновых островков на поверхности металла, находящихся в динамическом равновесии с хемосорбированным углеродом ($N_{\rm C} = 2 \cdot 10^{15}$ atom/cm² [11]).

Если температуру насыщенного углеродом рения T поднять выше температуры насыщения T_C до $T \ge T_C + 100$ К, то графеновые островки быстро разрушаются и на поверхности остаются только хемосорбированные атомы углерода. Если температуру понизить до $T \le T_C$, то избыточный углерод выделяется на поверхности и снова образует островки графена, затем сплошной слой графена и графит [11]. В данной работе исследуется кинетика выделения углерода из объема рения на его поверхность при разных температурах. Количество материала на поверхности определялось методом AES, методом зондирования поверхности потоком молекул CsCl, чувствительным к общей площади графеновых островков [3], или путем измерения термоэлектронной эмиссии с образца. Поскольку работа выхода островков графена на рении $e\varphi = 4.25 \text{ eV}$, а рения с хемосорбированным углеродом $e\varphi = 5.25 \text{ eV}$, наблюдаемый рост термоэлектронного тока при T = const прямо пропорционален общей площади S_0 островков графена. Все три способа хорошо согласуются между собой.

На рис. 1 показана зависимость изменения интенсивности Оже-сигнала углерода (I) и рения (2) при росте пленки графита при T = 1390 и $T_{\rm C} = 1900$ К, при этом вначале температуру насыщенного при $T_{\rm C}$ рения поднимали до T = 2200 К, когда на поверхности присутствует только хемосорбированный углерод, затем температуру быстро уменьшали до значения 1390 К, при котором начинается рост островков графена. Видно, что со временем интенсивность Оже-сигнала подложки стремится к нулю, а Оже-сигнал углерода достигает насыщения, что соответствует образованию пленки графита толщиной 6–7 слоев, приблизительно равной чувствительности метода AES. Форма Оже-спектра в этом случае типична для графита [10].

Ранее было показано, что один слой графена уменьшает интенсивность Оже-сигнала рения в 1.6 раза, два слоя — в 2.56 раза, три слоя — в 4.1 раза и т.д. [10]. Воспользовавшись этими данными, с учетом послойного роста пленки [10] можно обнаружить, что время образования каждого следующего слоя возрастает (a, b, c, ...на рис. 1). Это связано с необходимостью доставки атомов углерода со все большей глубины образца, так как лимитирующей стадией роста графита на поверхности в нашем случае является диффузия атомов углерода по объему металла [10]. Хотя, например, в случае системы Ni–C лимитирующей стадией является выход атомов углерода на поверхность из приповерхностного слоя, в то время как диффузия атомов углерода по

Рис. 1. Изменение интенсивности Оже-сигнала углерода (1) и рения (2) при выделении углерода из пересыщенного твердого раствора Re–C при T = 1390 K ($T_{\rm C} = 1900$ K). (a-e) — время образования K слоев графена (K = 1-5).

Рис. 2. Зависимость отношения времени t_K образования *К*-го слоя графена ко времени $t_1(T)$ образования первого слоя графена (K = 1) от числа слоев графена. Температура насыщения рения $T_C = 1900$ К. Температура выделения углерода T = 1200-1600 К. На рисунке указаны погрешности эксперимента.

объему никеля происходит быстро. В этом случае время образования K-го слоя графена такое же, как и для первого слоя (K = 1) [16].

Воспользуемся известным уравнением для диффузионных процессов

$$x^2 = 2D_0 t e^{-E_d/kT},$$
 (1)

где x — длина диффузионного перемещения атома в данном направлении за время t, E_d — энергия активации объемной диффузии, D_0 — коэффициент диффузии.

Из уравнения (1) следует, что в случае системы рений—углерод, когда лимитирующей стадией образования слоев графена является диффузия атомов углерода в объеме рения, "полная" длина x(t) диффузии атома углерода за время t пропорциональна количеству вышедших из объема атомов С, т. е. числу K слоев графена: $x(t) \sim K(t)$ и $t \sim K^2$. Действительно, из рис. 1 видно, что для K = 1 величина $t_a = 25$ s, для $K = 2 - t_b = 100$ s, для $K = 3 - t_c \sim 200$ s, т. е. $t_K \sim 25 K^2$ [s].

На рис. 2 представлена зависимость отношения времени t_K образования графена толщиной K слоев ко времени t_1 образования первого слоя графена (K = 1) от числа K слоев графена на поверхности для семи температур образца в диапазоне 1200–1600 К.

Из рис. 2 следует, что независимо от температуры *T* выделение углерода в диапазоне T = 1200-1600 K сохраняет зависимость $t_K/t_1 \sim K^2$, хотя время образования одного слоя $t_1(T)$ должно уменьшаться с ростом температуры в соответствии с уравнением

$$t_1 = \frac{x_1^2}{2D_0} e^{E_d/kT}.$$
 (2)

Действительно, глубина $x_1 = \text{const}$, с которой поступают атомы углерода из объема Re для образования первого слоя графена, не зависит от температуры выхода атомов углерода, а определяется лишь температурой насыщения $T_{\rm C} = 1900$. Тогда из уравнения (2) получим, что, хотя время выхода первого слоя уменьшается с ростом T, отношение $t_K/t_1 = K^2$ и сохраняется при любых T, если $T_{\rm C} = \text{const}$. Отметим, что нет физических причин ожидать, что механизм выделения изменится с дальнейшим ростом K. Отметим, что сохранить нужное число слоев графена можно в любой момент выключением тока накала рениевой ленты.

Ранее энергию активации E_d диффузии атомов углерода в насыщенном твердом растворе Re-C оценили как $E_d \sim 3.2 \text{ eV}$ [10]. Зная предельную растворимость углерода в рении [15], E_d и D_0 можно оценить более точно.

На рис. 3 показана зависимость времени образования графеновых островков $t_0(T)$ с относительной площадью $S_0 = 0.8$ от температуры подложки для $T_C = 2050$ К. Вначале температуру поднимали до T = 2200 К (как и в случае рис. 2), а затем резко снижали до $T \ll T_C$ и фиксировали время образования островков графена с $S_0 = 0.8$ методом зондирования поверхности молекулами CsCl. Видно, что время t_0 ($S_0 = 0.8$) сильно увеличивается с понижением температуры образца. Граничная температура, при которой еще можно за разумное время зафиксировать выделение углерода на поверхность рения из его объема, составляет T = 1200 К. Отметим,

Рис. 3. Зависимость времени t_0 образования графеновых островков с относительной площадью $S_0 = 0.8$ от температуры T насыщенного при $T_{\rm C} = 2050$ K рения. Точки определялись с помощью соотношения (1).

что данная температура для рения на несколько сотен градусов выше, чем для других металлов, например родия, никеля, вольфрама, тантала [10,11].

Если данные для $t_0(T)$ (рис. 3) перестроить в координатах $\ln t_0 - 1/kT$, то получается прямая, позволяющая найти $E_d = 3.1 \pm 0.1$ eV, а зная предельную растворимость $n_C(T)$ [15] углерода в рении и геометрию образца, можно при заданной температуре найти количество атомов углерода N' в каждой атомной плоскости ленты для площади 1 cm². Тогда глубина, с которой углерод при температуре T продиффундирует к поверхности, чтобы образовать островки графена, равна $x = \frac{N_C S_0 a}{N'}$, где $N_C = 3.86 \cdot 10^{15} \cdot 0.8 = 3.1 \cdot 10^{15}$ atom/cm², a = 3 Å — диаметр атома рения, $S_0 = 0.8$. В наших опытах x = 90 Å, тогда из формулы (1) при данном t можно найти $D_0 = 4 \cdot 10^{-2}$ cm² · s⁻¹. Аналогичную обработку результатов можно найти в нашей работе по исследованию системы Ni–C [16].

Важно отметить, что в настоящей работе мы целенаправленно выбирали высокие температуры процесса насыщения, так как в этом случае концентрация избыточного углерода $\Delta n_{\rm C} = n_{\rm C}(T_{\rm C}) - n_{\rm C}(T)$ в ленте при снижении температуры ($T \ll T_{\rm C}$) была практически постоянной $\Delta n_{\rm C} \cong n_{\rm C}(T_{\rm C})$, поскольку $n_{\rm C}(T) \ll n_{\rm C}(T_{\rm C})$. Величины E_d и D_0 не зависели от $T_{\rm C}$ для $T_{\rm C} = 1800-2050$ К и от S_0 , в том числе и для $S_0 \le 0.05$, когда кинетика выхода углерода определялась по изменению термоэлектронного тока, чувствительного на самых начальных стадиях роста графеновых островков.

Теоретическое рассмотрение кинетики выделения углерода на поверхность из объема пересыщенного твердого раствора Re—C

Решим задачу о количестве выделившегося при заданной температуре T углерода из пересыщенного твердого раствора в зависимости от времени $N_{\rm C}(t)$. Рассмотрим выделение углерода на поверхности $S = 1 \,{\rm cm}^2$ ленты рения толщиной $2l = 0.002 \,{\rm cm}$ (рис. 4), содержащего в своем объеме $V = S \cdot 2l = 2 \cdot 10^{-3} \,{\rm cm}^3$ $N_{\rm C} = 4.5 \cdot 10^{18}$ атомов ($T_{\rm C} = 2050 \,{\rm K}$). Температура выделения углерода на поверхность рения $T = 1500 \,{\rm K}$ ($T \ll T_{\rm C}$). Выше были приведены параметры диффузии $D(T) = 4.0 \cdot 10^{-2} e^{-\frac{31 \,{\rm eV}}{kT}} \,[{\rm cm}^2 \cdot {\rm s}^{-1}].$

Диффузия атомов из слоя конечной толщины 2*l* с двух сторон пластины определеяется уравнением диффузии с начальным и граничным условиями (рис. 4)

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}, \quad C \Big|_{x=0} = \begin{cases} C_0, & -l < x < l \\ 0, & |x| > l \end{cases}, \quad \frac{\partial C}{\partial x} \Big|_{x=0} = 0,$$
(3)

где C(x, t) — концентрация вещества в точке x в момент времени t.

Рис. 4. Схематическая иллюстрация к задаче о диффузионных процессах с участием углерода в объеме металла с его последующим выделением на поверхности. l — половина толщины ленты; C(x, t) — распределение углерода в металле в зависимости от времени t и координаты x: l — t = 0, 2 - t > 0. Величина |x| > l соответствует выделению углерода на поверхности образца.

Решение уравнения (3) запишется в виде [17,18]

$$C(x,t) = \frac{C_0}{2} \left(\operatorname{erf} \frac{x+l}{2\sqrt{Dt}} - \operatorname{erf} \frac{x-l}{2\sqrt{Dt}} \right), \tag{4}$$

где erf $\frac{x+l}{2\sqrt{Dt}} = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x+l}{2\sqrt{Dt}}} e^{-y^2} dy.$

Количество углерода, вышедшего с 1 ст² с обеих поверхностей ленты из ее объема за время *t*,

$$2Q(t) = -2\int_{0}^{t} D \left. \frac{\partial C(x, t')}{\partial x} \right|_{x=l} dt'.$$
 (5)

Подставляя в (5) решение (4), получим

$$\begin{aligned} \frac{\partial C(x,t)}{\partial x}\Big|_{x=l} &= \frac{C_0}{2\sqrt{\pi Dt}} \left(e^{-\frac{t^2}{Dt}} - 1\right),\\ 2Q(t) &= \frac{C_0 D}{\sqrt{\pi}} \int_0^t \frac{\partial t'}{\sqrt{Dt'}} \left(1 - e^{-\frac{t^2}{Dt'}}\right). \end{aligned}$$
(6)

Используя таблицы интегралов [19], найдем из (6) количество углерода, выходящего с двух сторон пластины площадью $S = 1 \text{ cm}^2$ и толщиной 2l за время t

$$2Q(t) = C_0 l \left\{ \left[1 - \Phi\left(\frac{l}{\sqrt{Dt}}\right) \right] + \frac{\sqrt{Dt}}{l\sqrt{\pi}} \left(1 - e^{-\frac{l^2}{Dt}} \right) \right\},\tag{7}$$

где $\Phi(y)$ — функция ошибок [18,20],

$$\Phi(y) = \frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-z^2} dz$$

или в переменных
$$y = \frac{l}{\sqrt{Dt}} \left(t = \frac{l^2}{Dy^2} = \frac{\tau_0}{y^2}, \tau_0 = \frac{l^2}{D} \right)$$

 $2Q(t) = C_0 l f(y),$ (8)

где

$$f(y) = [1 - \Phi(y)] + \frac{1}{y\sqrt{\pi}}(1 - e^{-y^2}).$$
(9)

В пластине толщиной 2l и площадью $S = 1 \,\mathrm{cm}^2$ количество атомов углерода составляет

$$N_{\rm C} = C_0 2lS = 4.5 \cdot 10^{18},$$

$$C_0 lS = \frac{N_{\rm C}}{2} \Big|_{S=1 \, {\rm cm}^2} = \frac{N_{\rm C}}{2}.$$
 (10)

Выходящий из пластины углерод "строит" слои графена на Re. Учтем, что количество углерода в одном слое графена $N_1 = 3.86 \cdot 10^{15} \,\mathrm{cm}^{-2}$. Тогда весь углерод пластины $N_{\rm C}$ может составить $K_{\rm C}$ слоев графена. В наших условиях

$$K_{\rm C} = \frac{N_{\rm C}}{N_1} = \frac{4.5 \cdot 10^{18}}{3.86 \cdot 10^{15}} = 1166.$$
 (11)

Число слоев графена K(t), выходящих из пластины за время t, исходя из (8) равно

$$K_{\rm C} = rac{2Q(t)}{N_1} = rac{C_0 lSf(y)}{N_1} = rac{N_{\rm C}}{2} rac{f(y)}{N_1},$$

или

 $K(t) = K_{\rm C} f(y)/2.$ (12)

Из уравнения (9) и величин $\Phi(y)$ в интервале 0 < $y \le 2.5$ (см. таблицу) видно, что

$$\lim f(y)\big|_{y>2.5} = \frac{1}{y\sqrt{\pi}}.$$
 (13)

Из (9), (13) получаем число слоев графена, выходящих из пластины за время *t*,

$$K(t) = K_{\rm C} \, \frac{1}{2\sqrt{\pi}y}.\tag{14}$$

Подставив в (12) $y = \frac{l}{\sqrt{Dt}}$, найдем K(t)

$$K(t) = \frac{K_{\rm C}}{2\sqrt{\pi}} \frac{\sqrt{Dt}}{l} = \frac{K_{\rm C}}{2\sqrt{\pi}} \sqrt{\frac{t}{\tau_0}},\tag{15}$$

так как $au_0 = rac{l^2}{D(T)}.$

Значения функций, входящих в формулу (9) при разных t

$t=\frac{\tau_0}{y^2},\mathrm{h}$	у	$1 - \Phi(y)$	$1 - e^{-y^2}$	$f(y) = \frac{2K(t)}{K_{\rm C}}$
18 100	0.1	0.8875	0.01	0.92
	0.5	0.4795	0.2212	0.62
181	1.0	0.1573	0.6321	0.36
42.25	2.0	0.0037	0.9817	0.16
29	2.5	0.0004	0.9981	0.13

Рис. 5. Расчетная кривая логарифма времени, необходимого для образования K слоев графена на рении при $T = 1500 \, {\rm K}$ $(T_{\rm C} = 2050 \,{\rm K})$, полученная на основе уравнения (16). Точки получены на основе соотношения $t_K = K^2 t_1$ (t_1 — время образования первого слоя графена).

Используя $D(T) = 4.0 \cdot 10^{-2} e^{-\frac{31 \text{ ev}}{kT}} [\text{cm}^2 \cdot \text{s}^{-1}]$, получим $D(T = 1500 \text{ K}) = 1.535 \cdot 10^{-12} \text{ cm}^2 \cdot \text{s}^{-1}$ и $\tau_0 \approx 181 \text{ h}$. С учетом $\frac{K_{\rm C}}{2\sqrt{\pi}} = \frac{1166}{2\sqrt{\pi}} = 328.92$ и $\sqrt{\tau_0} = 13.45 \,{\rm h}^{1/2}$ получим из (15) число слоев графена за время *t*

$$K(t) = 24.45\sqrt{t_h} = 189.4\sqrt{t_{\min}}.$$
 (16)

На рис. 5 приведена полученная на основе уравнения (16) расчетная кривая логарифма времени образования К слоев графита на рении для упомянутых выше параметров (сплошная линия). Точками представлены результаты, найденные при использовании уравнения (1) с учетом экспериментального времени t1 образования первого слоя графена, при этом $t_K \sim K^2 t_1$.

Необходимо отметить, что за разумное время (часы) на поверхности рения удается вырастить пленки толщиной ~ 50 слоев. Как видно из расчетов, чтобы весь углерод вышел из объема рения, требуется огромное время.

5. Обсуждение результатов

Из всех изученных нами ранее систем металл-углерод: Ir(111)-C, Mo(100)-C, Ni(111)-C, Rh(111)-C, Pt(111)-С [10,11], позволяющих выращивать на поверхности графеновые и графитовые пленки, рений оказался наиболее "удобным" материалом, так как, с одной стороны, в нем хорошо и в значительных количествах растворяется углерод, а с другой — процессы выделения углерода из объема на его поверхность протекают за разумное время. Это позволяет эффективно контролировать процессы образования графитовых пленок заданной толщины.

Иридий — металл, практически не растворяющий атомы углерода, и на его поверхности образуется только один слой графена. Более толстая пленка образуется при использовании атомного потока углерода, но эффективность роста резко падает с ростом толщины пленки из-за активной десорбции поступающих атомов углерода [11]. Платина мало растворяет углерод, поэтому на ее поверхности удается образовать только графитовые пленки менее 10 слоев. Молибден — карбидообразующий металл, поэтому при его насыщении углеродом имеется длительная стадия (часы) образования объемного карбида Мо₂С по всей толщине образца, после чего на его поверхности образуется графитовая пленка. Растворимость углерода в карбиде молибдена неизвестна, но из наших опытов следует, что толщина пленок графита на молибдене более 6-7 слоев [10].

На родии и никеле процессы объемной диффузии атомов углерода протекают быстро, и пленка графита образуется за секунды или десятки секунд, что усложняет контроль за сверхтонкими пленками графита на начальных этапах их роста. Большая растворимость углерода в родии и никеле позволяет выращивать пленки толщиной более 100 атомных слоев [10,11].

На основании данных настоящей работы можно заключить, что, зная предельную растворимость углерода в рении при температуре процесса насыщения ТС и параметры объемной диффузии углерода E_d и D₀, можно рассчитать время, необходимое для образования графитовой пленки заданной толщины при $T \ll T_{\rm C}$.

Список литературы

- [1] А.К. Гейм. УФН 181, 1284 (2011).
- [2] К.С. Новоселов. УФН 181, 1299 (2011).
- [3] A.Ya. Tontegode. Progr. Surf. Sci. 38, 201 (1991).
- [4] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman. Nature Nanotechnol. 3, 563 (2008).
- [5] J.T. Grant, T.W. Haas. Surf. Sci. 21, 76 (1970).
- [6] A. Nagashima, K. Nuka, H. Itou, T. Ichinokawa, C. Oshima, S. Otani. Surf. Sci. 291, 93 (1993).
- [7] I. Forbeaux, J.-M. Themlin, J.-M. Debever. Phys. Rev. B 58, 16396 (1998).
- [8] A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, Y. Hishiyama. Chem. Phys. Lett. 348, 17 (2001).
- [9] K. Harigaya, T. Enoki. Chem. Phys. Lett. 351, 128 (2002).
- [10] N.R. Gall, E.V. Rut'kov, A.Ya. Tontegode. Int. J. Mod. Phys. B 11, 1865 (1997).
- [11] E.V. Rut'kov, N.R. Gall. In: Physics and Applications of Graphene — Experiments. Intech Open Access Publ. (2011). Ch. 11. P. 209-292.
- [12] Н.Р. Галль, С.Н. Михайлов, Е.В. Рутьков, А.Я. Тонтегоде. ЖТФ 56, 4, 732 (1986).

- [13] З. Вакар, Н.Р. Галль, И.В. Макаренко, Е.В. Рутьков, А.Н. Титков, А.Я. Тонтегоде, М.М. Усуфов. ФТТ 40, 1570 (1998).
- [14] Е. Фромм, Е. Гебхардт. Газы и углерод в металлах. Металлургия, М. (1980). 712 с.
- [15] Е.В. Рутьков, Н.Р. Галль. Письма в ЖЭТФ 98, 375 (2013).
- [16] Е.В. Рутьков, А.Я. Тонтегоде, М.М. Усуфов. Изв. РАН. Сер. физ. **58**, 102 (1994).
- [17] Б.И. Болтакс. Диффузия в полупроводниках. Физматгиз, М. (1961). 462 с.
- [18] А.И. Райченко. Математическая теория диффузии в приложениях. Наук. думка, Киев (1981). 391 с.
- [19] И.С. Градштейн, И.М. Рыжик. Таблицы интегралов, сумм, рядов и произведений. Наука, М. (1971). 1108 с.
- [20] Е. Янке, Ф. Эмде. Таблицы функций с формулами и кривыми. ГИТТЛ, М.-Л. (1949). 420 с.