$_{04,06}$ Кристаллическая структура и диэлектрические свойства фаз Ауривиллиуса $A_{0.5}$ Bi_{4.5} $B_{0.5}$ Ti_{3.5}O₁₅ (A = Na, Ca, Sr, Pb; B = Cr, Co, Ni, Fe, Mn, Ga)

© В.Г. Власенко, С.В. Зубков, В.А. Шуваева, К.Г. Абдулвахидов, С.И. Шевцова

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

E-mail: v_vlasenko@rambler.ru

(Поступила в Редакцию 30 января 2014 г.)

Синтезированы новые поликристаллические Bi-содержащие слоистые перовскитоподобные оксиды со структурой фаз Ауривиллиуса (Φ A) с общей формулой $A_{0.5}$ Bi_{4.5} $B_{0.5}$ Ti_{3.5}O₁₅ (A =Na, Ca, Sr, Pb; B =Cr, Co, Ni, Fe, Mn, Ga). С помощью рентгеновской порошковой дифракции определены параметры элементарных ячеек полученных соединений. Все исследованные Φ A кристаллизуются в орторомбической сингонии, пространственная группа $A2_1am$ (36). На основе полученных структурных параметров проведен анализ степени искажений элементарных ячеек Φ A. Получены температурные зависимости диэлектрической проницаемости и определены температуры Кюри для всех образцов. Значительное различие в величинах максимумов диэлектрической проницаемости для Φ A Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅ и Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅ интерпретировано на основе данных электронной микроскопии и объясняется существенными изменениями пористости и размеров кристаллических зерен этих керамических образцов.

1. Введение

Фазы Ауривиллиуса (ФА) представляют собой большое семейство висмутсодержащих слоистых перовскитоподобных соединений [1–3], объединенных общей формулой $A_{m-1}Bi_2B_mO_{3m+3}$, где позиции A занимают катионы с большими радиусами (Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Bi³⁺ и Ln^{3+} (лантаниды)), позиции B внутри кислородных октаэдров занимают катионы с малыми радиусами (Ti⁴⁺, Cr³⁺, Ga³⁺, Mn⁴⁺, Fe³⁺, Nb⁵⁺, Ta⁵⁺ и W⁶⁺). Значение m определяет количество перовскитоподобных слоев $[A_{m-1}B_mO_{3m+1}]^{2-}$, находящихся между слоями [Bi₂O₂]²⁺, и может принимать целые или полуцелые значения в интервале от 1 до 5 и более. На рис. 1 показана кристаллическая структура ФА с m = 4.

Неослабевающий несколько десятилетий интерес к ФА обусловлен перспективами их практического использования как элементов устройств энергонезависимой сегнетоэлектрической памяти (FeRAM) [4], ионных проводников [5], каталитических соединений [6], электролюминесцентных тонких пленок [7], мультиферроиков [8,9]. Такая широкая область потенциального применения ФА связана с набором физических характеристик этих соединений, зачастую уникальных. В частности, многие ФА являются сегнетоэлектриками до высоких (по сравнению с обычными перовскитами) температур Кюри, вплоть до $T_c = 1000^{\circ}$ С [10,11]. Четырехслойные ΦA с m = 4 CaBi₄Ti₄O₁₅ (CBT), SrBi₄Ti₄O₁₅ (SBT) и РbBi₄Ti₄O₁₅ (PBT) характеризуются высокой скоростью переключения при низком рабочем напряжении, незначительной усталостью даже при 10¹² циклах переключения, низкой плотностью тока утечки на Pt-электродах, что важно для изготовления FeRAM [12-16].

На основе замещения позиций ионов А и В различными ионами с подходящими радиусами и валент-

Рис. 1. Кристаллическая структура $\Phi A \ c \ m = 4$.

ностями можно расширить семейство ФА в несколько раз [17–19]. Вариации состава оказывают существенное влияние как на параметры кристаллической структуры, так и на электрофизические характеристики ФА. Синтез новых ФА и проведение всего комплекса электрофизических измерений этих ФА позволяют установить необходимые многопараметрические корреляции состав-структура-свойства, на основе которых появляется возможность оптимизировать создание новых перспективных материалов для современной электронной промышленности.

В настоящей работе проведено исследование кристаллической структуры и диэлектрических свойств серии модифицированных ФА СВТ, SBT и PBT с общей формулой $A_{0.5}Bi_{4.5}B_{0.5}Ti_{3.5}O_{15}$ (где A = Na, Ca, Sr, Pb; B = Cr, Co, Ni, Fe, Mn, Ga).

2. Методика эксперимента

Поликристаллические образцы ФА были синтезированы путем твердофазной реакции соответствующих оксидов Bi₂O₃, TiO₂, Mn₂O₃, Cr₂O₃, NiO, PbO, Ga₂O₃, CoO, Fe₂O₃ и карбонатов CaCO₃, SrCO₃ и Na₂CO₃. Все исходные соединения имели марку осч или чда. Взвешенные в соответствии со стехиометрическим составом синтезируемого соединения порошки оксидов после продолжительного измельчения и перемешивания прессовались в таблетки. Обжиг образцов проводился в лабораторной муфельной печи на воздухе. Предварительный нагрев образца производился до температур $T = 770-800^{\circ}$ С, после чего проводились промежуточное измельчение и перемешивание. Окончательный обжиг осуществлялся при температуре $T = 1020-1050^{\circ}$ С.

Рентгеновские дифрактограммы были получены на дифрактометре ДРОН-3М с приставкой для порошковой дифракции ГП-13 и рентгеновской трубкой БСВ21-Си. Си $K\alpha_1$, α_2 -излучение выделялось из общего спектра с помощью Ni-фильтра. Регистрация дифрактограмм осуществлялась в интервале углов 2θ от 5 до 120° С с шагом 0.02° и экспозицией (временем регистрации интенсивности) в точке до 40 s. На дифрактограммах всех исследованных соединений отсутствовали дифракционные линии других фаз.

Анализ профиля дифрактограмм с нахождением положений линий и их индицирование (hkl) в соответствии с выбранной моделью элементарной ячейки был проведен с использованием программы PCW-2.4 [20]. Фон, вычитаемый из дифрактограмм, был представлен в виде полинома седьмой степени. Для описания профиля дифракционных линий использовалась псевдо-Voigt функция, являющаяся линейной комбинацией функций Гаусса и Лоренца. При подгонке модельной дифрактограммы к экспериментальной варьировалось шестнадцать параметров: восемь параметров фона, три параметра формы линий, смещение нуля гониометра, шкальный фактор, три параметра элементарной ячейки. Численными критериями достоверности определения интенсивности линий и параметров элементарной ячейки в рамках приписываемой пространственной группы являются *R*-факторы, которые рассчитывались по формулам

$$R_{p} = \frac{\sum_{i=1}^{N} |I_{i}^{\exp} - I_{i}^{calc}|}{\sum_{i=1}^{N} |I_{i}^{\exp}|},$$
(1)

$$R_{wp} = \left[\frac{\sum_{i=1}^{N} w_i \left(|I_i^{\exp} - I_i^{calc}|^2\right)}{\sum_{i=1}^{N} |I_i^{\exp}|^2}\right]^{1/2}, \qquad (2)$$

где I_i^{exp} и I_i^{calc} — соответственно экспериментальные и расчетные интенсивности для *i*-го шага сканирования, N — общее число точек дифрактограммы, весовой коэффициент каждой точки $w_i = 1/I_i^{\text{exp}}$.

Для всех исследованных соединений вычислены значения фактора F₃₀ по Смиту и Снайдеру [21]

$$F_{30} = \frac{1}{|\Delta 2\theta|} \frac{30}{N_{\text{poss}}} \left(\overline{|\Delta 2\theta|}, N_{\text{poss}} \right).$$
(3)

Этот фактор дает количественную характеристику качества индицирования экспериментальных дифрактограмм и определяется абсолютной величиной среднего отклонения $|\Delta 2\theta|$ значений $2\theta_{exp}$ первых 30 дифракционных пиков экспериментальной дифрактограммы от значений соответствующих $2\theta_{theor}$ положений рассчитанных дифракционных пиков (3). Значение N_{poss} равно количеству теоретических дифракционных пиков в интервале углов, где наблюдаются 30 первых дифракционных пиков экспериментальной дифрактограммы.

Для проведения электрических измерений образцы ФА прессовали в виде дисков диаметром 10 mm и толщиной ~ 1 mm, затем на плоские поверхности (вжигали при температуре 400°С) наносили Ag-Pt-электроды. Измерения проводились с помощью измерителя иммитанса E7-20 в частотном интервале 1 kHz-1 MHz в области температур от комнатной до 900°С.

Электронно-микроскопические изображения поверхности изломов керамических образцов получены на растровом электронном микроскопе Vega-Tescan с вольфрамовым катодом. Изображения получены во вторичных электронах с предварительным напылением тонкого слоя углерода на исследуемые поверхности образцов.

3. Обсуждение результатов

В СВТ, SВТ и РВТ перовскитоподобные слои описываются формулой $[A^{2+}Bi_2^{3+}Ti_4^{4+}O_{12}]^{2-}$, где $A = Ca^{2+}$, Sr²⁺, Pb²⁺). Таким образом, положения A занимают разновалентные ионы Bi³⁺ и A²⁺, в то время как в положении B находятся только ионы Ti⁴⁺. У исследу-

N₂	Соединение	Пр. группа	Параметры ячейки, Å			t	F20	T. °C
п/п			а	b	С	Ľ	1 30	10, 0
1	Na _{0.5} Bi _{4.5} Mn _{0.5} Ti _{3.5} O ₁₅	$A2_1am$	5.4255(9)	5.4526(5)	40.742(3)	0.9784	16(0.0162,120)	674
2	Ca _{0.5} Bi _{4.5} Fe _{0.5} Ti _{3.5} O ₁₅	$A2_1am$	5.424(9)	5.446(4)	40.822(3)	0.9762	_	778
3	Ca _{0.5} Bi _{4.5} Co _{0.5} Ti _{3.5} O ₁₅	$A2_1am$	5.4188(1)	5.4394(2)	40.8800(4)	0.9784	37(0.0101,81)	771
4	$Ca_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$	$A2_1am$	5.4368(1)	5.4428(3)	40.7982(9)	0.9790	23(0.0121,108)	782
5	$Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O_{15}$	$A2_1am$	5.4102(1)	5.4616(1)	40.9001(2)	0.9778	18(0.0150,111)	781
6	$Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$	$A2_1am$	5.4239(3)	5.4358(3)	40.9797(1)	0.9834	15(0.0161,125)	625
7	Sr _{0.5} Bi _{4.5} Co _{0.5} Ti _{3.5} O ₁₅	$A2_1am$	5.4348(2)	5.4503(2)	41.009(8)	0.9828	56(0.0107,50)	609
8	$Pb_{0.5}Bi_{4.5}Cr_{0.5}Ti_{3.5}O_{15}$	$A2_1am$	5.4240(2)	5.4320(1)	41.0437(1)	0.9847	41(0.0071,102)	565
9	$Pb_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O_{15}$	$A2_1am$	5.4244(1)	5.4402(2)	41.2051(3)	0.9828	39(0.0091,84)	598
10	Pb _{0.5} Bi _{4.5} Ga _{0.5} Ti _{3.5} O ₁₅	$A2_1am$	5.419(0)	5.4510(7)	41.0579(1)	0.9844	—	618

Состав, пространственная группа и параметры элементарной ячейки, значения толеранс-фактора *t*, значения фактора *F*₃₀ и температура Кюри *T*_c ФА

емых нами модифицированных ФА и в положении A, и положении B присутствуют разновалентные ионы, при этом формулу перовскитоподобных слоев можно записать в виде $[A_{0.5}^{2+}\text{Bi}_{2.5}^{3+}B_{0.5}^{3}\text{Ti}_{3.5}^{4+}\text{O}_{12}]^{2-}$ ($B = \text{Cr}^{3+}$, Ga^{3+} , Ni^{3+} , Fe^{3+}).

В результате синтеза удалось получить монофазные образцы всех соединений, что подтверждено рентгенодифракционными данными. На рис. 2 приведены дифрактограммы всех образцов ФА. Все линии на дифрактограммах были проиндицированы в рамках орторомбической ячейки в полярной пространственной группе $A2_1am$ (36), при этом не было обнаружено рефлексов примесных фаз. Параметры ячеек, полученные на основе подгонки, приведены в таблице. Для всей серии ФА получены низкие значения *R*-факторов ($R_p \le 3.5$ и $R_{wp} \le 5.0$), что указывает на хорошее качество под-

Рис. 2. Рентгеновские дифрактограммы порошков ΦA : $I - Na_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O_{15}$, $2 - Ca_{0.5}Bi_{4.5}Fe_{0.5}Ti_{3.5}O_{15}$, $3 - Ca_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O_{15}$, $4 - Ca_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$, $5 - Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O_{15}$, $6 - Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O_{15}$, $7 - Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$, $8 - Pb_{0.5}Bi_{4.5}Cr_{0.5}Ti_{3.5}O_{15}$, $9 - Pb_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O_{15}$, $10 - Pb_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O_{15}$.

гонки теоретических дифрактограмм к эксперименту. Достоверность выбора пространственной группы определяется рассчитанными значениями фактора $F_{30} > 15$ (см. таблицу) для всех ФА, отсюда также видно, что $|\Delta 2\theta|$ не превышает одного шага сканирования.

Степень искажения идеальной перовскитовой структуры и, как следствие, диэлектрические свойства соединений зависят от соотношения ионных радиусов атомов в положениях а и В и характеризуются таким параметром, как толеранс-фактор $t = \frac{R_A + R_O}{\sqrt{(R_B + R_O)}}$ [22], где R_A и R_B радиусы катионов в позициях А и В соответственно. Значения толеранс-факторов t для исследуемых образцов приведены в таблице. При вычислениях были использованы значения радиусов катионов А и В, приведенные в таблицах Шеннона: R_A (Ca²⁺ — 1.34 Å, Bi³⁺ — 1.38 Å, Na⁺ — 1.39 Å, Sr²⁺ — 1.44 Å, Pb²⁺ — 1.49 Å), R_B (Ti⁴⁺ — 0.605 Å, Ni³⁺ — 0.60 Å, Co³⁺ — 0.615 Å, $Cr^{3+} - 0.61$ Å, $Ga^{3+} - 0.62$ Å, $Fe^{3+} - 0.645$ Å, $Mn^{3+} - 0.655$ Å, $Mn^{3+} - 0.6555$ Å, $Mn^{3+} - 0.6555$ Å, Mn^{3+} 0.645 Å) [23], при этом для *А*-катионов координационное число было установлено равным 12, а для В-катионов — 6 при соответствующих степенях окисления. Ионный радиус Bi³⁺ с координационным числом 12 в таблице Шеннона не приводится и был определен нами по зависимости его ионного радиуса от координационного числа, экстраполированной в область высоких значений.

Как видно из таблицы, все значения толеранс-факторов t для синтезированных ФА находятся в узком диапазоне 0.9762—0.9847, располагающемся в центре области наибольшей устойчивости кубических структур, характеризующейся значениями $0.9 \le t \le 1.0$.

Для ФА в качестве параметров, характеризующих структуру этих соединений и степень ее искажения, часто используются следующие величины [24,25]: $a_t = (a_0 + b_0)/2\sqrt{\sqrt{2}}$ — средняя величина тетрагонального периода, c' = 3c/(8 + 6m) — толщина перовскитоподобного слоя, $\delta c' = (c' - a_t)/a_t$ — относительное искажение кислородных октаэдров вдоль оси c.

Рис. 3. Зависимости значений толеранс-фактора t(a), средней величины тетрагонального периода $a_t(b)$, толщины перовскитоподобного слоя c'(c) и относительного искажения кислородных октаэдров вдоль *c*-оси $\delta c'(d)$ от ионных радиусов катионов *A*.

Зависимости a_t , c' и $\delta c'$ от величин радиусов катионов A, рассчитанные на основании экспериментальных значений параметров элементарных ячеек исследованных ΦA , приведены на рис. 3. Как видно из рис. 3, между этими структурными параметрами и величинами радиусов катионов наблюдаются определенные корреляции. Как уже отмечалось ранее [26], параметры ячейки ΦA практически линейно зависят от ионного радиуса иона в положении A. Такие же закономерности наблюдаются и в нашем ряду соединений ΦA . Хорошо видно, что как значения толеранс-факторов t, так и параметры a_t и c' линейно увеличиваются с увеличением радиуса замещающего катиона R_A . Для групп ΦA с одинаковыми A(например, A = Ca и Pb) зависимость указанных параметров при замещениях в позициях B не так очевидна.

На рис. 3, *d* показана зависимость $\delta c'$ от радиуса замещающего катиона R_A . Видно, что для ΦA с Ca²⁺ и Na⁺ происходит сжатие кислородных октаэдров вдоль оси *c*, для ΦA с Sr²⁺ октаэдры практически не искажены, тогда как для ΦA с Pb²⁺ кислородные октаэдры вытянуты вдоль данного направления. Для одного из образцов Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ были проведены температурные рентгенодифракционные исследования в сопоставлении с хорошо изученным CBT.

На рис. 4 представлены температурные зависимости параметров *a*, *b*, *c* Са_{0.5}Ві_{4.5}Gа_{0.5}Ті_{3.5}О₁₅ и СВТ. Полученные нами параметры элементарной ячейки для ФА СВТ при комнатной температуре $(A2_1am (36, cab), a = 5.3973(1) \text{ Å}, b = 5.4231(8) \text{ Å},$ c = 40.674(4) Å) близки к значениям, полученным в других работах [27]. Из рис. 4 видно, что ромбическое искажение ячейки практически исчезает при $T_{\rm c} = 751^{\circ}{\rm C}$ в Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ и при T_c = 785°С в CBT, что является индикатором фазового перехода из орторомбической А2₁ат в тетрагональную І4тт фазу. Значение T_c для CBT близко к полученному ранее для этого соединения $T_c = 790^{\circ}$ С [28,29]. В отличие от СВТ, где сближение параметров ячейки а и b происходит постепенно с ростом температуры, в Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ ромбическое искажение более ярко выражено и остается практически неизменным вплоть до 500°C, после чего начинает достаточно быстро уменьшаться. Зависимость

4*

Рис. 4. Температурные зависимости параметров *a*, *b*, *c* Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ (*a*, *b*) и CBT (*c*, *d*), полученные из данных порошковой рентгеновской дифракции.

параметра c от температуры в Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅, напротив, более близка к линейной по сравнению с аналогичной зависимостью для CBT.

В целях исследования диэлектрических свойств полученных ФА были измерены значения диэлектрической проницаемости в широком температурном диапазоне, которые показаны на рис. 5.

Как видно, на всех температурных зависимостях $\varepsilon/\varepsilon_0(T)$ наблюдается отчетливый пик, соответствующий фазовому переходу из орторомбической в кубическую фазу. По положению этого пика были определены температуры Кюри T_c всех образцов (см. таблицу).

Известным фактом является то, что температура Кюри T_c ФА коррелирует с величинами ионных радиусов RA. Было отмечено, что с увеличением размера катиона происходит понижение T_c в ФА с m = 4 типа $ABi_4Ti_4O_{15}$, а сам фазовый переход сегнетоэлектрик—параэлектрик становится более диффузным [30]. Также в работе [31] на примере ФА показано, что T_c увеличивается при уменьшении толеранс-фактора *t* и соответственно увеличении структурных искажений. Такая же закономерность наблюдается и для исследованных в настоящей работе

ФА $A_{0.5}Bi_{4.5}B_{0.5}Ti_{3.5}O_{15}$, как это видно из рис. 6. Влияние замещений Ti⁴⁺ в кислородных октаэдрах практически не сказывается на изменении T_c в ФА, так как ионные радиусы допированных катионов *В* отличаются мало и не играют основной структурной роли в поляризационных процессах [31].

Для исследованных ФА, где в положении A присутствуют ионы Bi^{3+} и Ca^{2+} , близкие по ионному радиусу, ход температурной зависимости $\varepsilon/\varepsilon_0(T)$ (рис. 5) практически не претерпевает изменений при замещении атомов в положении B. Величины максимумов кривых диэлектрической проницаемости и температуры Кюри близки для всех образцов ФА. Отметим, что для $Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O_{15}$ максимум диэлектрической проницаемости наблюдается при температурах, на 30°C превышающих температуру Кюри T_c , определенную на основе дифракционных данных.

Образцы с ионами Sr^{2+} и Pb^{2+} в положении *А* демонстрируют значительно бо́льшие вариации как по температуре Кюри T_c , так и по величине максимума диэлектрической проницаемости. Особенно заметны различия в диэлектрических характеристиках между

Рис. 5. Зависимости $\varepsilon/\varepsilon_0(t)$ для Ca_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅ (1), Ca0.5Bi4.5Ni0.5Ti3.5O15 (2),Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ (3),(4), Ca0.5Bi4.5Fe0.5Ti3.5O15 $Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O_{15}$ (5),Sr0.5Bi4.5Ni0.5Ti3.5O15 (6), Pb0.5Bi4.5Cr0.5Ti3.5O15 (7), Pb_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅ (8), $Pb_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O_{15}$ (9) на частоте 200 kHz.

Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅ и Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅, несмотря на то что изменения в составе сводятся к замене Со на близкий по ионному радиусу Ni. Как видно из рис. 5, максимум диэлектрической проницаемости Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅ достигает значений в 1700 (кривая 5), в то время как в Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅ это значение в 4 раза меньше и составляет около 480 (кривая 6). Для того чтобы понять причины такого значительного различия, дополнительно было проведено исследование микроструктуры образцов при помощи метода сканирующей электронной микроскопии (СЭМ).

Как было показано в ряде работ [32–35], на диэлектрические свойства ФА существенное влияние могут оказывать микроструктурные характеристики образцов, такие как плотность, размеры зерен и пористость керамики. На рис. 7 показаны СЭМ-изображения $Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O_{15}$ и $Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$. На фотографии хорошо видны пластинчатые зерна, характерные для ФА керамики, размерами порядка $1-3\,\mu$ т при толщине $0.2-0.5\,\mu$ т (рис. 7, *a*). Такая форма зерен

Рис. 6. Зависимость температуры Кюри T_c от значения толеранс-фактора t для ФА: I — Na_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O₁₅, 2 — Ca_{0.5}Bi_{4.5}Fe0.5Ti_{3.5}O₁₅, 3 — Ca_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅, 4 — Ca_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅, 5 — Ca_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅, 6 — Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅, 7 — Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅, 8 — Pb_{0.5}Bi_{4.5}Cr_{0.5}Ti_{3.5}O₁₅, 9 — Pb_{0.5}Bi_{4.5}Mn_{0.5}Ti_{3.5}O₁₅, 10 — Pb_{0.5}Bi_{4.5}Ga_{0.5}Ti_{3.5}O₁₅.

10 µm

20 µm

Рис. 7. СЭМ-изображения поверхности изломов керамики Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O₁₅ (*a*, *b*) и Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O₁₅ (*c*).

обусловлена анизотропией кристаллической структуры ФА. Как видно из рис. 7, *b*, *c*, образец $Sr_{0.5}Bi_{4.5}Co_{0.5}Ti_{3.5}O_{15}$ характеризуется существенно меньшей пористостью и более крупными размерами зерна, чем в случае $Sr_{0.5}Bi_{4.5}Ni_{0.5}Ti_{3.5}O_{15}$, несмотря на идентичные условия синтеза. По-видимому, этим можно объяснить существенно более высокое пиковое значение диэлектрической проницаемости. Таким образом, диэлектрические характеристики образцов могут быть существенно улучшены путем оптимизации условий синтеза для каждого состава.

Список литературы

- [1] B. Aurivillius. Arkiv Kemi 1, 463 (1949).
- [2] B. Aurivillius. Arkiv Kemi 1,499 (1949).
- [3] B. Aurivillius. Arkiv Kemi **2**,512 (1950).
- [4] B.H. Park, B.S. Kang, S.O. Bu, T.W. Noh, J. Lee, W. Jo. Nature 410, 682 (1999).
- [5] R.K. Kendall, C Navas, J. K. Thomas. Chem. Mater. 8, 642 (1996).
- [6] G. Centi, S. Perathone. Micropor. Mesopor. Mater. **107**, 3 (2008).
- [7] D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, T. Sun. J. Am. Ceram. Soc. 96, 184 (2013).
- [8] N. Sharma, B.J. Kennedy, M.M. Elcombe, Y. Liu, C.D. Ling. J. Phys.: Cond. Matter 20, 025 215 (2008).
- [9] L. Keeney, T. Maity, M. Schmidt, A. Amann, N. Deepak, N. Petkov, S. Roy, M. Pemble, R. Whatmore. J. Am. Ceram. Soc. 96, 2339 (2013).
- [10] G. Geguzina, E. Fesenko, E. Shuvaeva. Ferroelectrics 167, 311 (1995).
- [11] Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, Н.В. Дергунова. Неорган. материалы **32**, *4*, 474 (1996).
- [12] A. Simões, C. Riccardi, M. Ramírez, L. Cavalcante, E. Longo, J.A. Varela. Solid State Sci. 9, 756 (2007).
- [13] X. Zheng, X. Huang, C. Gao. J. Rare Earths 25, 168 (2007).
- [14] J. Zheng, Y. Li, Q. Yang, X. Jing, Q. Yin. J. Eur. Ceram. Soc. 25, 2727 (2005).
- [15] A. Simoes, M. Ramírez, A. Gonzalez, C. Riccardi, A. Ries, E. Longo, J. Varela. J. Solid State Chem. 179, 2206 (2006).
- [16] P. Ferrer, J. Iglesias, A. Castro. Chem. Mater. 16, 1323 (2004).
- [17] А.Т. Шуваев, В.Г. Власенко, Д.С. Дранников, И.А. Зарубин. Неорган. материалы **41**, *10*, 1231 (2005).
- [18] Г.А. Гегузина, А.Т. Шуваев, Е.Т. Шуваева, Л.А. Шилкина, В.Г. Власенко. Кристаллография **50**, 59 (2005).
- [19] В.Г. Власенко, С.В. Зубков, В.А. Шуваева. ФТТ **55**, *1*, 88 (2013).
- [20] W. Kraus, G. Nolze. PowderCell for Windows (version 2.3). Federal Institute for Materials Research and Testing, Berlin, Germany (1999).
- [21] R.L. Smith, J. Snyder. J. Appl. Cryst. 12, 60 (1979).
- [22] V.M. Goldschmidt. Geochemisca veterlun. Norske Videnkap, Oslo (1927).
- [23] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [24] В.А. Исупов. ЖНХ 39, 731 (1994).
- [25] В.А. Исупов. Неорган. материалы 42, 11, 1353 (2006).
- [26] B.J. Kennedy, Q. Zhou, Ismunandar, Y. Kubota, K. Kato. J. Solid State Chem. 181, 1377 (2008).

- [27] J. Zheng, Y. Li, D. Wang, Q. Yin. Solid State Commun. 133, 553 (2005).
- [28] S.K. Rout, E. Sinha, A. Hussian, J.S. Lee, C.W. Ahn, I.W. Kim, S.I. Woo. J. Appl. Phys. **105**, 024 105 (2009).
- [29] H. Yan, H. Zhang, M.J. Reece, X. Dong. Appl. Phys. Lett. 87, 082 911 (2005).
- [30] E. Subbarao. Integr. Ferroelectrics. 12, 33 (1996).
- [31] Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Got, T. Kamiyama, H. Asano, F. Izumi. Phys. Rev. B 61, 6559 (2001).
- [32] B. Jiménez, L. Pardo, A. Castro, P. Millán, R. Jiménez, M. Elaatmani, M. Oualla. Ferroelectrics 241, 279 (2000).
- [33] D. Kajewski, Z. Ujma, K. Szot, M. Paweczyk. Ceram. Int. 35, 2351 (2009).
- [34] A. Moure, L. Pardo. J. Appl. Phys. 97, 084 103 (2005).
- [35] H. Zhang, H. Yan, M.J. Reece. J. Appl. Phys. 108, 014109 (2010).