от Неустойчивость равновесной круговой конфигурации винтовых вихрей

© В.Л. Окулов

Институт теплофизики СО РАН, Новосибирск E-mail: okulov@itp.nsc.ru

Поступило в Редакцию 8 июля 2002 г.

Впервые аналитически исследована задача устойчивости круговой равновесной конфигурации N винтовых вихрей. В результате получено решение, позволяющее эффективно проанализировать случаи существования устойчивых вихревых систем (пары, триплета и т.д.), которые неоднократно наблюдались на практике.

Как дополнительный промежуточный результат для угловой скорости вращения системы из N винтовых вихрей получено алгебраическое представление, позволяющее проводить расчеты с высокой точностью во всем диапазоне изменения винтового шага и имеющее более простой вид, чем известные асимптотики.

Устойчивая пара винтообразных вихрей неоднократно наблюдалась в различных вихревых потоках (например, в ядрах торнадо; в следах за винтом и пропеллером; после распада вихрей над дельтовидным крылом и в трубах; в вихревых камерах разной конфигурации и технологического назначения; при спаривании вихревых когерентных структур в турбулентных потоках и т.п.). Триплет винтовых вихрей возникает в потоках существенно реже, а конфигурация из четырех вихревых структур — еще более неустойчивое явление. В предварительных экспериментах на прямоугольной вихревой камере, описанной в [1], нам удавалось наблюдать четыре вихря лишь в течение очень короткого промежутка времени, затем структура распадалась.

Теоретически задача устойчивости для круговой равновесной конфигурации, состоящей из N вихревых структур, изучена только для плоской полигональной системы N точечных вихрей или прямолинейных вихревых нитей (предельный случай винтовых вихрей с бесконечным шагом). Результаты исследований Кельвина, Томсона и Хэвлока [2] определяют возможность потери устойчивости такой системой только

80

для числа точечных вихрей $N \ge 7$. Этот результат, полученный для простейшего частного случая, существенно не согласуется с описанными выше наблюдениями.

Поэтому цель данной работы впервые аналитически найти условия устойчивости для равновесной конфигурации, состоящей из N тонких одинаковых винтовых вихрей интенсивности Γ , с шагом h (далее шаг — $l = h/2\pi$); с осями, определенными винтовыми линиями $X_n = (a \cos(\theta + n\delta); a \sin(\theta + n\delta); a\tau(\theta + n\delta))$, лежащими на соосном с осью z цилиндре радиуса a с одинаковым сдвигом $\delta = 2\pi/N$ по углу θ и общим безразмерным шагом $\tau = l/a$. Пусть ядра вихрей имеют отнесенный к a радиус $\varepsilon \ll 1$. Такая невозмущенная система вихрей, вращаясь, равномерно движется вдоль оси цилиндра.

Для исследования ее неустойчивости необходимо иметь простую и точную процедуру вычисления поля скорости, индуцированного винтовыми вихревыми нитями. Однако здесь, в отличие от прямолинейных нитей с простой записью решения в виде полюса, закон Био–Савара не интегрируется в конечном виде. Его трудно (из-за сингулярности в ядре) непосредственно использовать для численного расчета поля скорости, а известные асимптотические решения не дают требуемой точности при определении скорости (см., например, [3]), необходимой для решения задачи устойчивости во всем диапазоне изменения шага винтовых вихрей. Другая форма решения для винтовой вихревой нити в бесконечном пространстве (формулы 8, 9, 12 и 13 из [4]) и в трубе (формулы 19 и 24 из [5]) была записана через ряды Каптейна вида

$$H_M^{I,J} = \sum_{n=1}^{\infty} m^M I_m^{\langle I \rangle}(mx) K_m^{\langle J \rangle}(my) \cdot e^{im\chi}, \qquad (1)$$

где под x, y понимаются радиальные расстояния, деленные на шаг l $(x \leq y)$, а $\chi = \theta - z/l$; $I_m^{(0)}(mx)$, $K_m^{(0)}(my)$ — модифицированные функции Бесселя, а $I_m^{(1)}(mx)$, $K_m^{(1)}(my)$ — их производные. Ряд (1) сходится медленно, особенно вблизи сингулярности $(x \rightarrow y)$. Для преодоления этой трудности в [6] для случая $x \rightarrow y$; M = 1; I, J = 0.1 или 1.0 из ряда (1) были выделены особенности по пространственным переменным, а основное влияние кручения — шага вихрей было описано интегральным остатком W (формула 4.1 из [6]). Однако W, как и закон Био-Савара, не удается проинтегрировать в конечном виде. В результате авторы [6,7] для 20 значений шага численно с

точностью до 7 знака рассчитали скорость вращения конфигурации из одного, двух, трех и четырех винтовых вихрей; уточнили асимптотики [3,8] для большого и малого шага и обобщили их для *N* вихрей. Другой метод [5] предполагает при определении скорости и функции тока непосредственное выделение из ряда (1) особенностей, записанных в искаженных пространственных переменных, явно учитывающих кручение вихрей. В отличие от первого, он позволяет решать задачи с разным числом винтовых вихрей в пространстве и в любых точках рассчитывать характеристики течений с необходимой точностью.

Для исследования устойчивости круговой равновесной конфигурации винтовых вихрей обобщим второй метод для всех типов (I и J = 0или 1) рядов (1), возникающих в определениях функции тока (M = 0), поля скорости (M = 1) и ее пространственных производных (M = 2). В рядах (1) формально заменим цилиндрические функции их равномерными разложениями при больших порядках (формулы 9.7.7–10 из [9]). После сворачивания полученных рядов главная часть $S_M^{I,J}$ рядов (1) примет вид

$$\begin{split} S_M^{I,J} &= \lambda^{I,J} \left[a_M^{\langle 0 \rangle} \frac{e^{\xi + i\chi}}{(e^{\xi} - e^{i\chi})^2} + a_M^{\langle 1 \rangle} \frac{e^{i\chi}}{e^{\xi} - e^{i\chi}} + a_M^{\langle 2 \rangle} \ln(1 - e^{-\xi + i\chi}) \\ &\quad + a_M^{\langle 3 \rangle} \text{Li}_2(e^{-\xi + i\chi}) + a_M^{\langle 4 \rangle} \text{Li}_3(e^{-\xi + i\chi}) \right] \\ e^{\xi} &= \frac{x}{y} \frac{e^{\sqrt{1 + x^2}} (1 + \sqrt{1 + y^2})}{e^{\sqrt{1 + y^2}} (1 + \sqrt{1 + x^2})}; \quad \lambda^{(I,J)} = \frac{1}{2} \frac{(1 + x)^{\frac{1}{2} - I} (1 + y)^{\frac{1}{2} - J}}{x^{-I} (-y)^{-J}}; \\ a_M^{\langle 0 \dots 4 \rangle} &= \begin{bmatrix} 0 & 0 & 1 & \alpha^{(I,J)} & \beta^{(I,J)} \\ 0 & 1 & \alpha^{(I,J)} & \beta^{(I,J)} & \gamma^{(I,J)} \\ 1 & \alpha^{(I,J)} & \beta^{(I,J)} & \gamma^{(I,J)} & \delta^{(I,J)} \end{bmatrix}, \end{split}$$

где $\alpha^{(i,j)}$, $\beta^{(i,j)}$, $\gamma^{(i,j)}$, $\delta^{(i,j)}$ — полиномы 1–4 степени из функций u_n и v_n (формулы 9.3.9–10, 9.3.13–14 из [9]), возникающие при перемножении равномерных разложений и зависящие от l. Таким образом, сами особенности и их коэффициенты явно содержат информацию о кручении вихрей. Отметим также, что различие между $S_M^{l,j}$ и $H_M^{l,j}$ очень мало —

менее процента. Поэтому для решения задачи представление рядов (1) через $S_M^{I,J}$ более эффективно, чем использование асимптотик, лучшие из которых не работают в важном диапазоне изменения безразмерного шага вихря τ от 0.8 до 2 [6,7].

Чтобы продемонстрировать это утверждение, с помощью представления $S_M^{I,J}$ определим скорость движения рассматриваемой системы винтовых вихрей. Она складывается из самоиндуцированной скорости фиксированного вихря и из скорости, индуцированной другими вихрями. Для определения первой составляющей используем ее представление через ряды (1), записанное в [3, § 4.1.1], а вторую найдем как сумму решений через ряды (1) из [4], смещенных от выбранного вихря по угловой координате на $n\delta$ (n = 1, ..., N - 1). Заменяя ряды (1) в полученном выражении на соответствующие им главные части $S_M^{I,J}$, после долгих алгебраических преобразований с суммированием особенностей и полилогарифмов, расположенных равномерно по окружности, для угловой скорости движения системы из N винтовых вихрей получим формулу

$$\frac{4\pi a^2}{\Gamma} \Omega = N - \frac{\tau}{\sqrt{1+\tau^2}} - \frac{\tau}{(\sqrt{1+\tau^2})^3} \left[\ln\left(\frac{\tau}{N(\sqrt{1+\tau^2})^3}\right) + 1 \right] \\ - \frac{\tau^3}{(\sqrt{1+\tau^2})^9} \left[\left(\tau^4 - 3\tau^2 + \frac{3}{8}\right) \frac{\xi(3)}{N^2} - \tau^4 - 3\tau^2 - 3 - \frac{1}{\tau^2} \right] \\ - \frac{\tau}{(\sqrt{1+\tau^2})^3} \left[\ln\left(\frac{1+\tau^2}{\varepsilon}\right) + \frac{1}{4} \right],$$
(2)

где $\xi(\cdot)$ — дзета-функция Римана. В талице приводится сравнение угловых скоростей Ω' без последнего слагаемого в форуле (2) с соответствующими значениями Ω'_{WB} , насчитанными с помощью интеграла W, затабулированного в [7]. Следует отметить, что для всего диапазона изменения безразмерного шага τ максимальная разница не превосходит 0.2%, а сама формула имеет более простой вид, чем асимптотики из [7]. Чтобы найти скорость поступательного перемещения системы вихрей вдоль оси z, используем связь $w_z + rw_{\theta}/l = \Gamma/2\pi l$ между тангенциальной и осевой компонентами скорости, индуцированной

τ	N = 2		<i>N</i> = 3		N = 4	
	$4\pi a^2 \Omega_{WB}'/\Gamma$	$4\pi a^2\Omega'/\Gamma$	$4\pi a^2 \Omega_{WB}'/\Gamma$	$4\pi a^2\Omega'/\Gamma$	$4\pi a^2 \Omega_{WB}'/\Gamma$	$4\pi a^2\Omega'/\Gamma$
0.01	1.02149	1.02149	1.52352	1.52352	2.02495	2.02495
0.05	1.06700	1.06699	1.57710	1.57710	2.08427	2.08426
0.1	1.09850	1.09850	1.61850	1.61850	2.13268	2.13268
0.2	1.12433	1.12433	1.66271	1.66271	2.18988	2.18988
0.3	1.12316	1.12311	1.67674	1.67673	2.21472	2.21471
0.4	1.10818	1.10798	1.67271	1.67267	2.21866	2.21864
0.5	1.08673	1.08641	1.65782	1.65774	2.20881	2.20879
0.6	1.06258	1.06241	1.63656	1.63650	2.19003	2.19001
0.7	1.03742	1.03773	1.61164	1.61168	2.16561	2.16562
0.8	1.01199	1.01292	1.58472	1.58491	2.13780	2.13786
0.9	0.98668	0.98816	1.55686	1.55719	2.10818	2.10829
1	0.96178	0.96357	1.52883	1.52925	2.07786	2.07801
2	0.76622	0.76495	1.30363	1.30331	1.82988	1.82977
3	0.66451	0.66328	1.18667	1.18639	1.70148	1.70139
4	0.61110	0.61059	1.12549	1.12540	1.63476	1.63474
5	0.58025	0.58015	1.09026	1.09026	1.59655	1.59655
6	0.56088	0.56097	1.06822	1.06826	1.57274	1.57275
7	0.54791	0.54809	1.05351	1.05356	1.55690	1.55692
8	0.53878	0.53899	1.04319	1.04324	1.54582	1.54584
9	0.53210	0.53231	1.03566	1.03571	1.53777	1.53778
10	0.52706	0.52726	1.02999	1.03003	1.53171	1.53172

Сравнение угловых скоростей вращения, рассчитанных по данным работы [7] и формуле (2)

винтовыми вихрями в безграничном пространстве [1,5]. Таким образом, рассматриваемая круговая конфигурация винтовых вихрей в состоянии равновесия движется вдоль оси со скоростью $U = (\Gamma/2\pi a - a\Omega)/\tau$ и вращается с угловой скоростью Ω (2), а в предельном случае $\tau \to \infty$ система прямолинейных вихрей просто вращается с угловой скоростью $\Omega = \Gamma(N-1)/4\pi a^2$, совпадающей со скоростью вращения

(3)

точечных вихрей [2]. Переходя к винтовым переменным (r, χ) и соответствующим проекциям скорости $(w_r, w_{\chi} = w_{\theta} - w_z/\tau)$ [1,5], задача устойчивости указанной конфигурации сводится к двумерной постановке. Пусть *k*-вихрь смещен из положения равновесия в точку $(a + r_k, 2\pi n/N + (\Omega - U/l)t + \chi_k)$, тогда в линейной постановке возмущенные уравнения движения *k*-вихря имеют вид:

$$\frac{dr_k}{dt} = \frac{\Gamma}{\pi\alpha} \frac{1}{\tau^2} \operatorname{Re} \left\{ \chi_k \sum_{n(n\neq k)} S_2^{1,1} \left(a, a, \frac{2\pi(n-k)}{N} \right) - \sum_{n(n\neq k)} \chi_n S_2^{1,1} \left(a, a, \frac{2\pi(n-k)}{N} \right) \right\},$$

$$a \frac{d\chi_k}{dt} = \frac{\Gamma}{\pi a^2} \frac{1}{\tau^2} \operatorname{Re} \left\{ r_k \sum_{n(n \neq k)} \left[\frac{\tau^2 + 1}{\tau^2} S_2^{1,1} \left(a, a, \frac{2\pi(n-k)}{N} \right) \right. \\ \left. + \frac{1 - \tau^2}{\tau} S_1^{0,1} \left(a, a, \frac{2\pi(n-k)}{N} \right) \right] \right. \\ \left. + \frac{(\tau^2 + 1)^2}{\tau^2} \sum_{n(n \neq k)} r_n S_2^{1,1} \left(a, a, \frac{2\pi(n-k)}{N} \right) \right\} - \frac{\tau^2 + 1}{\tau^2} \Omega r_k.$$

В системе (3) в производных от поля скорости ряды Каптейна (1) были заменены их главной частью $S_M^{I,J}$. Следуя [2], решения системы будем искать в виде $r_k = \alpha(t)e^{2\pi km/N}$ и $\chi_k = \beta(t)e^{2\pi km/N}$. Здесь m субгармоническое волновое число, принимающее целые значения на отрезке [0, N - 1]. При m = 0 все вихри ведут себя одинаковым образом. В результате имеем систему уравнений $\alpha'(t) = A(m)\beta(t)$ и $\beta'(t) = B(m)\alpha(t)$. Отсюда следует, что α и β пропорциональны ехр $(t\sqrt{AB})$. Следовательно, если найдется m, для которого $AB \ge 0$, то система неустойчива. Как и при выводе (2), после трудоемких алгебраических преобразований удается найти простую форму для

Диаграммы субгармонических волновых чисел (m) для мод неустойчивости круговой равновесной конфигурации из N винтовых вихрей для случая сохранения суммарной площади сечений вихревых ядер, т. е. $\varepsilon_N = 0.15\sqrt{N}$.

$$\frac{16\pi^2 a^3}{\Gamma^2} AB = \left[m(N-m) \frac{\sqrt{1+\tau^2}}{\tau} - \frac{\tau}{4} \frac{4\tau^2 - 3}{(\sqrt{1+\tau^2})^5} \left(\frac{N}{m} - C - \psi \left(-\frac{m}{N} \right) \right) \right] \\ \times \left[m(N-m) \frac{\sqrt{1+\tau^2}}{\tau} - 2(N-1) \frac{\tau^2}{1+\tau^2} + \frac{\tau}{\sqrt{1+\tau^2}} - 1 \right] \\ + \frac{\tau}{(\sqrt{1+\tau^2})^3} \left(\ln \left(\frac{\tau}{\varepsilon N \sqrt{1+\tau^2}} \right) + \frac{5}{4} \right) \\ + \frac{\tau^3}{(\sqrt{1+\tau^2})^5} \left(\ln(N) - \left(1 - \frac{1}{4\tau^2} \right) \left(\frac{N}{m} - C - \psi \left(-\frac{m}{N} \right) \right) \right) \\ + \frac{\tau^3}{(\sqrt{1+\tau^2})^9} \left[\left(\tau^4 - 3\tau^2 + \frac{3}{8} \right) \frac{\xi(3)}{N^2} - \tau^4 - 3\tau^2 - 3 - \frac{1}{\tau^2} \right] \\ + \frac{\tau^3(1+\tau^2)}{(\sqrt{1+\tau^2})^{11}} \left(\tau^4 - 3\tau^2 + \frac{3}{8} \right) \frac{N^2 - 1}{N^2} \xi(3) \right],$$

где C = 0.577215... — постоянная Эйлера; $\psi(\cdot)$ — пси-функция. Заметим, что соотношение (4) при $\tau \to \infty$ полностью совпадает с формулой m(N-m)[m(N-m)-2(N-1)] для точечных вихрей [2]. Анализируя (4) при разных значениях шага τ , были определены неустойчивые моды (см. рисунок), которые оказались более реалистичными, чем решение [2].

Таким образом, впервые аналитически исследована задача устойчивости круговой равновесной конфигурации винтовых вихрей.

Работа финансировалась в рамках проектов ИНТАС 00-00232 и РФФИ 01-01-00899.

Список литературы

- [1] Alekseenko S.V. et al. // J. Fluid Mech. 1999. V. 382. P. 195-243.
- [2] Saffman P.G. Vortex Dynamics. Cambridge University Press, 1992.
- [3] Ricca R.L. // J. Fluid Mech. 1994. V. 273. P. 241-259.
- [4] Hardin J.C. // Phys. Fluids. 1982. V. 25. P. 1949-1952.
- [5] Okulov V.L. // Russian J. Engineering Thermophys. 1995. V. 5. P. 63-75.
- [6] Boersma J., Wood D.H. // J. Fluid Mech. 1999. V. 384. P. 263–280.
- [7] Wood D.H., Boersma J. // J. Fluid Mech. 2001. V. 447. P. 149–171.
- [8] Kuibin P.A., Okulov V.L.// Phys. Fluids 1998. V. 10. P. 607-614.
- [9] Abramovitz M., Stegun I.A. // Handbook of Mathematical Functions. Dover, 1964.