06 Энергетическое положение электрически активных центров в окисном слое SIMOX-структур

© А.Ю. Аскинази, А.П. Барабан, В.А. Дмитриев, Л.В. Милоглядова

С.-Петербургский государственный университет, НИИ физики

Поступило в Редакцию 19 февраля 2002 г.

Методами, основанными на измерении высокочастотных вольт-фарадных характеристик, проводились исследования структур Si–SiO₂, сформированных по SIMOX-технологии. Оценено энергетическое положение электрически активных центров в окисном слое SIMOX-структур.

Приборы, создаваемые на основе структур кремний-на-изоляторе (SOI), являются многообещающими для современной микро- и твердотельной электроники. В связи с этим изучение электрически активных центров данных структур представляет большой научный и практический интерес. Один из способов создания SOI-структур — формирование замурованных окисных слоев в объеме кремния путем имплантации в Si ионов кислорода (SIMOX-технология). Несмотря на многочисленные исследования, остаются нерешенными вопросы об энергетическом положении и природе образующихся в оксиде электрически активных центров.

Целью настоящей работы является установление энергетического положения электрически активных центров в окисном слое SIMOXструктур, образующихся в результате формирования замурованного SiO₂.

В работе исследовались структуры Si–SiO₂, полученные путем имплантации ионов кислорода с энергией 190 keV (доза имплантации $1.8 \cdot 10^{18} \text{ cm}^{-2}$) в объем кремния при температуре 650°С, последующего отжига при $T = 1320^{\circ}$ С в течение 6 h и стравливания внешнего слоя кремния, что приводило к формированию слоя двуокиси кремния толщиной примерно 450 nm. Воздействие электрическим полем ("+"на Si) осуществлялось при напряжениях, не вызывающих деструктирующего

23

Рис. 1. Зависимости потенциала плоских зон от толщины окисного слоя SIMOX-структур: *1* — исходные структуры, *2* — подверженные полевому воздействию.

пробоя окисного слоя исследуемых структур (напряженности электрического поля в окисле $E_{ox} = 1-5$ MV/cm). Облучение из области ближнего ультрафиолета (БУФ) ($h\nu < 6$ eV) осуществлялось засветкой ртутной лампой ДРЛ-250.

Для исследования зарядового состояния структур Si–SiO₂ использовали методы, основанные на измерении высокочастотных вольтфарадных характеристик (ВЧ ВФХ), в частности метод послойного профилирования [1], который позволял получать зависимости потенциала

Рис. 2. Зависимости потенциала плоских зон от напряженности электрического поля в окисном слое SIMOX-структур: *1* — исходные структуры, *2* — после БУФ-облучения.

плоских зон (V_{fb}) от толщины окисного слоя (d_{ox}) (рис. 1), и метод полевых циклов [1], который позволял получать зависимости $-V_{fb}$ от E_{ox} (рис. 2). Все измерения выполнялись при температуре 293 К в системе электролит–диэлектрик–полупроводник (ЭДП) [1].

Ранее нами было установлено, что в окисном слое исследуемых структур вблизи межфазовой границы (МФГ) с Si формируется положительный заряд $Q^+ = (0.4 \pm 0.1) \cdot 10^{12} \text{ cm}^{-2}$ с центроидом $X = (65 \pm 10) \text{ nm}$ (рис. 1) [2]. БУФ-облучение без приложенного электрического поля приводило к практически полной нейтрализации этого заряда (рис. 1) [2]. Полевые воздействия на SIMOX-структуры, не подвергнутые БУФ-облучению (метод полевых циклов) показали прак-

тически полную стабильность зарядового состояния структур в области полей $E_{ox} \leq 2.5 \,\text{MV/cm}$ (рис. 2) [3]. При дальнейшем увеличении напряженности электрического поля начиная с $E_{ox} = 3$ MV/cm величина $-V_{fb}$ резко увеличивалась (рис. 2) [3]. Это свидетельствовало об образовании в окисле рассматриваемых структур положительного заряда. Его центроид также был равен $X = (65 \pm 10)$ nm (рис. 1) [2,3]. БУФ-облучение структур, подвергнутых полевому воздействию, приводило к практически полной нейтрализации положительного заряда в окисном слое (рис. 1) [2]. Предварительное БУФ-облучение SIMOX-структур не приводило к существенному изменению вида зависимости $-V_{fb}(E_{ox})$ (рис. 2). Одновременное воздействие БУФ-облучением и электрическим полем с напряженностью $E_{ox} \approx 0.2 \,\mathrm{MV/cm}$ не приводило к изменению зарядового состояния окисла. При этом аналогичное воздействие в полях $E_{ox} = 1 \text{ MV/cm}$ приводило к образованию значительного положительного заряда с центроидом $X = (65 \pm 10)$ nm [2]. Последующее БУФоблучение без поля приводило к практически полной нейтрализации этого заряда.

Таким образом, воздействие БУФ-облучением и/или электрическим полем приводило к изменению зарядового состояния окисного слоя за счет перезарядки электрически активных центров (ЭАЦ) (наиболее вероятно единой природы), расположенных в SiO₂ с центроидом 65 nm.

Полученные экспериментальные результаты позволяют высказать ряд соображений о механизмах перезарядки ЭАЦ, их энергетическом положении в запрещенной зоне SiO₂ и природе.

В процессе создания структур Si–SiO₂ по SIMOX-технологии в объеме окисного слоя в области 65 nm от границы с кремнием образуются ЭАЦ, часть из которых находится в нейтральном состоянии (N⁰), а часть оказываются положительно заряженными (N⁺) и определяют исходное состояние структур. Наличие положительного заряда в объеме SiO₂ приводит к появлению в нем электрического поля и, следовательно, к пространственному искажению вида энергетических зон в объеме SiO₂ (появлению потенциальной ямы для электронов в зоне проводимости SiO₂). Считая, что все ЭАЦ расположены в плоскости на расстоянии X = 65 nm от кремния, глубина потенциальной ямы (Δ) без приложенного внешнего электрического поля может быть оценена

Рис. 3. Схемы перезарядки электрически активных центров в объеме SiO₂ (пояснения в тексте).

следующим образом:

$$\Delta = \frac{\mathbf{N}^+ \cdot q^2 \cdot X}{\varepsilon_0 \varepsilon_{ox}},\tag{1}$$

где q — элементарный заряд, $\varepsilon_0 \varepsilon_{ox}$ — диэлектрическая проницаемость SiO₂. Подставляя известные значения параметров, получаем $\Delta \cong 1.3$ eV.

БУФ-облучение структур без приложенного электрического поля приводило к перезарядке положительно заряженных ЭАЦ до нейтрального состояния за счет фотоинжекции электронов из кремния и их последующего дрейфа в электрическом поле, создаваемом биографическим положительным зарядом до его полной нейтрализации $(N^+ + e \xrightarrow{hv} N^0)$ (рис. 3, *a*). Наличие слабого внешнего электрического поля ("+" на Si), препятствующего дрейфу фотовозбужденных электронов, приводило к неизменности зарядового состояния структур.

Величина этого поля может быть оценена из выражения

$$E_{ox}^{\otimes} = \frac{q \cdot N^+}{\varepsilon_0 \varepsilon_{ox}} \tag{2}$$

и составляет $E_{ox} = 0.2 \,\text{MV/cm}$, что совпадает с результатами экспериментов.

При приложении внешнего электрического поля существенно большей величины (1 MV/cm) БУФ-облучение структур приводит к фотоопустошению нейтральных ЭАЦ ($N^0 \xrightarrow{h\nu} N^+ + e$) за счет оптического возбуждения электронов с этих центров в зону проводимости SiO₂ и их последующего дрейфа к кремниевой подложке (рис. 3, b). Это приводит к образованию в объеме SiO2 значительного положительного заряда. Энергетическое положение нейтральных ЭАЦ в этом случае не превышает энергии квантов при БУФ-облучении, т.е. 6 eV от дна зоны проводимости SiO₂. Увеличение положительного заряда в окисле только при полевом воздействии ($E_{ox} \ge 3 \,\text{MV/cm}$) связано с перезарядкой нейтральных ЭАЦ в положительно заряженные центры (N⁰ $\xrightarrow{el.field}$ N⁺ + e) за счет туннелирования электронов в зону проводимости SiO₂ с последующим их дрейфом к Si (рис. 3, c). Необходимо отметить, что именно в таких электрических полях начинается туннельная инжекция электронов в SiO₂ из металлического контакта (Mg) в структурах металл-диэлектрик-полупроводник [4]. Это позволяет предположить, что энергетическое положение нейтральных ЭАЦ составляет величину, близкую к высоте потенциального барьера на границе SiO₂/Mg, т.е. $E_t^0 \approx 2.4 \,\mathrm{eV}.$

Единое значение центроида, характеризующего пространственное положение ЭАЦ при их перезарядке за счет существенно различных механизмов (оптическая перезарядка, туннелирование), указывает на достаточно узкую область пространственной локализации ЭАЦ, формирующихся в процессе создания структур Si–SiO₂ по SIMOX-технологии. В качестве ЭАЦ с описанными выше свойствами могут выступать ненасыщенные связи кремния (Si₃ \equiv Si-) на границе SiO₂ — кремниевые кластеры, о существовании которых в SIMOX-структурах отмечалось в работе [5]. Такая ненасыщенная связь является амфотерным центром [6], имеющим три метастабильных состояния, различающиеся количеством захваченных электронов, зарядом и энергетическим положением. Наиболее существенным для дальнейших исследований остается вопрос,

какова причина образования высокой концентрации кремниевых кластеров на расстоянии 65 nm от границы с кремнием.

Список литературы

- [1] Барабан А.П., Булавинов В.В., Коноров П.П. Электроника слоев SiO₂ на кремнии. Л.: Изд. ЛГУ, 1988. 304 с.
- [2] Аскинази А.Ю., Барабан А.П., Дмитриев В.А. и др. // Письма в ЖТФ. 2001. Т. 27. В. 10. С. 57–61.
- [3] Аскинази А.Ю., Барабан А.П., Милоглядова Л.В. // ЖТФ. 2002. Т. 72. В. 5. С. 61–64.
- [4] Lenzlinger M., Snow E.H. // J. Appl. Phys. 1969. V. 40. N 1. P. 278-283.
- [5] Stoemenos J., Garcia A. et al. // J. Electrochem. Soc. 1995. V. 142. N 4. P. 1248– 1260.
- [6] White C.T., Ngai K.L. // J. Vac. Scien. and Techn. 1979. V. 16. N 5. P. 1412–1418.