06;12 Поликристаллические неселективные приемники излучения на основе пленок высшего силицида марганца

© Т.С. Камилов, А.Ж. Хусанов, М.К. Бахадырханов, Д.К. Кобилов

Ташкентский государственный авиационный институт, Узбекистан, Кокандский государственный педагогический институт, Узбекистан Ташкентский государственный политехнический университет, Узбекистан

Поступило в Редакцию 11 июня 2002 г.

При наклонном осаждении испаряемого в реакторе марганца на подложки из кремния получены преимущественно текстурированные пленки высшего силицида марганца (BCM) с анизотропной термоэлектродвижущей силой (термо-ЭДС). Исследованы основные параметры приемников инфракрасного излучения на основе этих пленок.

Показано, что разработанные приемники на пленках BCM толщиной $\sim 5\,\mu{\rm m}$ на подложке из кремния передают временну́ю структуру излучения с быстродействием $\leqslant 10^{-6}\,{\rm s}$, обладают коэффициентом преобразования не менее 500 $\mu{\rm V/W},$ электросопротивлением $\sim 200\,\Omega.$

Имеется очень мало экспериментальных данных по электрическим свойствам поликристаллических пленок высшего силицида марганца (ВСМ) MnSi_{1.71÷1.75} [1,2]. В то же время исследование кинетических свойств этих пленок представляет не только теоретический, но и значительный практический интерес. В работах [3–5] было установлено, что массивные монокристаллические образцы ВСМ при $T \ge 300$ К обладают сильной анизотропией кинетических свойств, которая сохраняется и в собственной области проводимости вплоть до 1000 К. В данной работе приводятся результаты исследования возможности получения поликристаллических пленок ВСМ, обладающих анизотропией термо-ЭДС (АТЭ), осаждением паров марганца при высоких температурах на подложки из кремния. В приемниках на АТЭ [6] ЭДС измеряется в направлении, перпендикулярном возникающему под действием излучения градиенту температуры. Быстродействие таких приемников определяется характерным временем установления градиента температуры по

11

толщине h приемного элемента преобразователя [6]:

$$\tau = \frac{h^2}{a},\tag{1}$$

где $a = \lambda/c\rho$ — коэффициент температуропроводности ВСМ, m²/s; λ — коэффициент теплопроводности, W/(m · K); c — удельная теплоемкость J(kg · K); ρ — удельная плотность, kg/m³. Согласно [6,7], коэффициент преобразования *S* для монокристаллов не зависит от толщины приемного элемента:

$$S = k \, \frac{\Delta a}{2\lambda b} \, \sin 2\varphi, \tag{2}$$

где k — коэффициент поглощения излучения, m⁻¹; $\Delta \alpha = \alpha_{\parallel} - \alpha_{\perp}$, α_{\parallel} — коэффициент термо-ЭДС вдоль тетрагональной оси роста кристалла (ось c), V/K; α_{\perp} — коэффициент термо-ЭДС перпендикулярно оси c, V/K; b — расстояние между измеряемыми контактами, m; φ — угол между нормалью к подложке и осью c. Изготовление монокристаллических пластин толщиной $h \leq 10 \,\mu$ m, обеспечивающих, согласно (1), $\tau \leq 10^{-5}$ s, является сложной задачей и требует затраты массивного материала. Согласно [3], при осаждении металлов, обладающих анизотропией свойств в монокристаллическом состоянии, если ось молекулярного пучка испаряемого металла составляет некоторый угол θ с нормалью к подложке (угол осаждения), образуется текстура осаждаемой пленки (преимущественная ориентация одного из кристаллографических направлений в кристаллах) под углом $\varphi \neq 0$ к нормали подложки. Таким образом, метод косого осаждения позволяет получить пленки с АТЭ [6,7].

Пленки силицидов марганца на кремнии получены в высоковакуумном реакторе при вакууме $10^{-5}-10^{-6}$ mm Hg, который поддерживался высокоскоростной откачной системой (450 L · s⁻¹).

В качестве подложки был использован кремний КДБ-10, КДБ-3000 с ориентацией (111). Поверхность образцов перед загрузкой в реактор полировалась механическим и химическим способами. Испарение дважды возогнанного марганца происходило в реакторе при $T \ge 1130^{\circ}$ С в течение 15–20 min. Количество испаряемого марганца бралось из расчета времени испарения, достаточно для полного осаждения на подложку. Исследуемые пленки формировались в результате реагенной

диффузии кремниевой подложки с парами марганца. В такой установке в течение одного технологического процесса можно получать пленки силицидов марганца при различной температуре подложки (T_1) и угле осаждения марганца $\theta = 0 \div 90^\circ$, что позволяло определить оптимальную температуру и угол для получения нужной фазы и структуры.

Для полученных пленок методом Ван-дер-Пау измерялись электрическое сопротивление и коэффициент Холла. Коэффициент Холла во всей рассматриваемой области температур положителен, концентрация носителей $p \cong 10^{19}-10^{20}$ cm⁻³, коэффициент термо-ЭДС в зависимости от T_1 составил $\alpha = 150 \div 200 \,\mu$ V/К и электропроводимость $\sigma = 10-15 \, (\Omega \cdot \text{cm})^{-1}$. Контроль за составом и структурой полученных пленок проводился с использованием рентгеновских и электронномикроскопических методов. Фазовый и структурный анализы пленок силицидов марганца проводились снятием рентгеновских спектров отражения с помощью дифракции электронов и просвечивающего электронного микроскопа [2,8]. Исследования пленок этими методами позволили оптимизировать условия получения поликристаллических пленок в области температур подложек 950 \div 1040°C, состоящих в основном из высшего силицида марганца (BCM) и моносилицида марганца.

Типичная морфология поверхности пленок, исследованная в растровом электронном микроскопе, приведена на рис. 1. Как видно из морфологии поверхности пленки силицида марганца, полученного при $T_1 = 1020 \div 1040^{\circ}$ С, размеры зерен составляют $3-12\,\mu$ m. На рис. 2 представлена микрофотография поперечного скола образцов. Область *A* на рис. 2 представляет собой столбчатую структуру (текстуру) из микрокристаллов ВСМ [8,9], область *B* — переходный слой (ПС) и область *C* — кремний. Причем в возникших ПС (область *B*), согласно [10], на границе пленки и подложки концентрация бора меньше, чем в объеме кремния в связи с сегрегацией примесей. Это позволяет уменьшить шунтирование пленок подложкой. Как видно из рис. 2, столбчатая структура имеет угол отклонения по отношению нормали подложки и это приводит к АТЭ. О возможности получения колончатых структур с различными углами отклонения по отношению нормали подложки будет сообщено отдельно.

При исследовании быстродействия τ и коэффициента преобразования *S* пленки помещались в экранированный корпус и ЭДС, возникаюшая на контактах пленки при ее облучении, подавалась на вход осцилло-

Рис. 1. Морфология поверхности пленки высшего силицида марганца.

Рис. 2. Микрофотография поперечного скола образца: *А* — столбчатая структура (текстура) из микрокристаллов ВСМ, *В* — переходный аморфизированный или поликристаллический слой, *С* — кремний (подложка).

графа либо измерительного усилителя В7-8. Контакты были получены напылением из серебра или алюминия шириной 1 mm, а расстояния между контактами были 8 mm. Измерения *S* и τ проводились на длинах волн излучения $\lambda = 1.06 \,\mu\text{m}$ при длительностях импульса $40 \div 200$ ns, на $\lambda = 10.6 \,\mu\text{m}$ при модуляции излучения с частотой $10^2 \div 10^4$ Hz и длительностях импульса $0.1 \div 1.5 \,\mu\text{s}$, а также при модуляции излучения лампы накаливания. Получено, что пленки ВСМ толщиной $5 \div 7 \,\mu\text{m}$ на подложках из кремния имеют быстродействие $\tau \leq 10^{-6}$ s, а *S* не зависимо от длины волны излучения имели более $500 \,\mu\text{V/W}$.

На основе структурного анализа и изучения морфологии поверхности пленок, полученных при $T_1 = 1000 \div 1040^{\circ}$ С, установлено, что они имеют сплошной колончатый мелкозернистый поликристаллический характер и состоят в основном из фаз ВСМ, имеющих преимущественную ориентацию кристаллов по отношению к нормали подложки. Эти пленки ВСМ имеют следующие преимущества:

1) обладают анизотропией термо-ЭДС;

2) обладают химической стойкостью к агрессивным средам в широком диапазоне температур, не требуют защиты поверхности;

 формирование пленки ВСМ происходит в результате реагенной диффузии кремниевой подложки с парами марганца, что обусловливает высокую сцепляемость пленки с матрицей и ее стойкость к различным механическим воздействиям;

4) по техническим параметрам: спектральная чувствительность сохраняется вплоть до 200 μ m; коэффициент преобразования при длине излучения $\lambda = 10.6 \,\mu$ m $S = 500-2000 \,\mu$ V/W; постоянные времени (быстродействие) $\tau \leq 10^{-6}$ s; сопротивления элемента не более 200 Ω .

На основе пленок BCM могут быть созданы неселективные приемники теплового излучения в условиях измерения быстропротекающих процессов при записи информации на запоминающие устройства, а также при передаче данных по различным каналам связи.

Список литературы

- [1] Krontiras Ch., Pomoni K., Roilos M. // J. Phys. D. Appl. Phys. 1988. V. 21. P. 509.
- [2] Адашева С.И., Абдуллаев И., Вязьмина Е.А., Камилов Т.С., Клечковская В.В. // Изв. РАН. Сер. Физ. 1993. Т. 57. № 2. С. 133–136.

- [3] Силициды переходных металлов четвертого периода / Гельд П.В., Сидоренко Ф.А. М.: Металлургия, 1971. 584 с.
- [4] *Силициды /* Самсонов Г.В., Дворина Л.А., Рудь Б.М. М.: Металлургия, 1979. 271 с.
- [5] Andreev V.I., Granovskii A.B., Engalychev A.E., Zaitsev V.K., Ordin S.V., Yakovlev V.A. Abstracts of Papers, VI All–Union Conf. (Moscow). 1986. P. 22.
- [6] Zaitsev V.K. CRC Handbook of Thermoelectrics ed DW Rowe New York-London: CRC Press, 1985. P. 299.
- [7] Термоэлементы и термоэлектрические устройства / Анатычук Л.И. Киев: Наук. думка, 1979. 664 с.
- [8] Андреев В.И., Грановский А.Б., Яковлев В.А. // Квантовая электроника. 1985. Т. 12. № 6. С. 1295–1296.
- [9] Kamilov T.S., Sadullaev B.L., Ganiev U.Sh., Kamilov B.T. // Semicond. Sci. Technol. 1988. V. 13. P. 496.
- [10] Kamilov T.S., Chirva V.A., Kabilov D.K. // Semicond. Sci. Technol. 1999. V. 14. P. 1012.