06.1;06.2 Электрические характеристики гетеропереходов (*p*) 3C–SiC–(*n*) 6H–SiC

© А.А. Лебедев, А.М. Стрельчук, Д.В. Давыдов, Н.С. Савкина, А.Н. Кузнецов, Л.М. Сорокин

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 22 апреля 2002 г.

Проведено исследование характеристик гетероструктуры системы (p) 3С– SiC /(n) 6H–SiC, выращенной методом сублимационной эпитаксии. Определены разрывы зон и построена энергетическая диаграмма гетероперехода. Показано, что данная гетероструктура является перспективной для получения на ее основе транзисторов с двухмерным электронным газом (HEMT).

В предыдущих работах [1,2] нами была показана возможность получения гетероэпитаксиальной структуры (p) 3С–SiC/(n) 6H–SiC методом сублимационной эпитаксии. Использовавшиеся методы структурного анализа показали, что рост слоя p-3C SiC происходил непосредственно на слое 6H SiC n-типа проводимости. Согласно данным EBIC, данный pn-переход был резким и достаточно структурно совершенным. Целью настоящей работы было формирование диодных структур на основе гетерополитипной структуры и исследование их электрических свойств.

Омические контакты к слою *p*-типа проводимости были получены магнетронным напылением пленок Al и Ti с последующим отжигом в вакууме при 1100°С. Омические контакты к n^+ -подложке были получены магнетронным нанесением Ni отжигом при 900°С. Меза-структуры с площадями 3×10^{-3} cm, 1×10^{-4} cm и 8×10^{-5} cm были сформированы ионно-плазменным травлением в SF₆ с использованием маскирующего покрытия из Al.

Концентрация нескомпенсированных доноров (акцепторов) $(N_d - N_a)$ определялась по наклону вольт-фарадных (C-U) характеристик. Величина $N_d - N_a$ составила $1.7 - 2 \times 10^{17}$ сm⁻³ в слое 6H–SiC *n*-типа и $N_a - N_d \sim 3 \times 10^{18}$ сm⁻³ в слое 3C–SiC *p*-типа проводимости. C-U характеристики диодов были линейны в координатах $C^{-2} - U$ (рис. 1), что означало, что полученный *pn*-переход был резким. Напряжение емкостной от-

89

Рис. 1. Вольт-фарадные характеристики исследовавшихся гетеропереходов.

сечки (U_c^c) определялось экстраполяцией линейной зависимости $C^{-2}-U$ к $C^{-2} \Rightarrow 0$ (где C — емкость *pn*-перехода и U — приложенное напряжение) и для исследовавшися диодов составило 2.65 ± 0.05 V. Было показано, что в области малых плотностей токов зависимость тока от напряжения была экспоненциальной: $J = J_0 \exp(qV/nkT)$ (рис. 2) (с коэффициентом идеальности $q \sim 2.1-2.4$). На том основании, что большинство диодов вне зависимости от площади имели подобные I-V и C-U характеристики был сделан вывод о достаточно высокой однородности свойств эпитаксиальных слоев на расстояниях порядка диаметра структуры.

В спектре электролюминесценции (EL) диодов одновременно наблюдались две полосы с максимумами $hv_{\rm max} \approx 2.9 \, {\rm eV}$ и $hv_{\rm max} \approx 2.3 \, {\rm eV}$,

Рис. 2. Вольт-амперные характеристики исследовавшихся гетеропереходов.

и их интенсивности росли с увеличением прямого тока (рис. 3). В спектре EL диодов преобладала полоса с максимумом $hv_{max} \approx 2.9 \text{ eV}$, и интенсивность второй полосы увеличивалась после нагрева структуры. Спектральное положение полос EL с максимумами при $hv_{max} \approx 2.9 \text{ eV}$ и $hv_{max} \approx 2.3 \text{ eV}$, близкими ширинам запрещенных зон 6H- и 3C–SiC, их незначительная полуширина (в частности, по сравнению с полушириной так называемой "дефектной" (зеленой в 6H–SiC) ЭЛ), характерное изменение интенсивности при увеличении тока и нагреве, позволяют связать эти две полосы ЭЛ с аннигиляцией свободного экситона в 6H-и 3C–SiC [3,4].

Оценим теперь значения разрыва зон проводимости (ΔE_c) и валентной зоны (ΔE_v) из полученного экспериментального значения контактной разности потенциалов (U_d). ($U_d = U_c^c + 2kT/e$, где k — постоянная Больцмана, T — абсолютная температура и e — заряд

Рис. 3. Спектры электролюминесценции при прямом токе 70 mA, T = 300 K (1); 600 K (2) (кривая 2 сдвинута вверх на 1000 единиц).

электрона [5]). Известно [6], что

$$\Delta E_c = U_d - E_{g_{2C}} + \mu_{3C} + \mu_{6H},$$

где E_g — величина запрещенной зоны 3C SiC, μ_{3C} и μ_{6H} — величина энергетического зазора между положением уровня Ферми и дном ближайшей зоны в *p*-3C и *n*-6H соответственно.

Будем полагать, что при комнатной температуре положение уровня Ферми совпадает с положением основных легирующих примесей: $\mu_{3C} \approx 0.2 \text{ eV}; \ \mu_{6H} \approx 0.15 \text{ eV}.$ Отсюда $\Delta E_c = 0.55 \pm 0.05 \text{ eV},$ следовательно [6] $\Delta E_v = E_{g_{6H}} - E_{g_{3C}} - \Delta E_c = 0.05 \text{ eV}.$ Отметим, что полученное значение ΔE_c хорошо согласуется с последними данными по определению сродства электронов 6H и 3C SiC [7]: $\chi_{6H} = 3.5 \text{ eV}; \ \chi_{3C} = 4.0 \text{ eV}.$ Отсюда $\Delta E_c = \chi_{3C} - \chi_{6H} \sim 0.5 \text{ eV}.$

На рис. 4 на основе полученных значений для ΔE_c и ΔE_v построена энергетическая диаграмма *p*-3C/*n*-6H гетероперехода. Эта диаграмма оказалась близка к рассчитанной теоретически в работе [8] для той же пары полупроводников.

Рис. 4. Зонная диаграмма *p*-3C–SiC/*n*-6H–SiC гетероперехода.

Как видно из диаграммы, небольшое значение ΔE_v не мешает инжекции дырок из p^+ -3C SiC в *n*-6H SiC. В то же время возможна и инжекция электронов из широкозонного материала в узкозонный. Таким образом, в спектре ЭЛ данной структуры могут присутствовать полосы излучения, связанные с рекомбинацией как в 6H-, так и в 3C SiC, что и наблюдалось в эксперименте.

Полученные в настоящей работе экспериментальные результаты могут быть объяснены образованием 3С–6Н SiC *pn*-гетероперехода с хорошим структурным совершенством. Определенные значения разрыва зон $\Delta E_c = 0.55 \text{ eV}$; $\Delta E_v = 0.05 \text{ eV}$ хорошо согласуются с теоретическими расчетами и экспериментальными значениями для сродства электронов в 6H и 3C SiC. Данная структура зон показывает принципиальную возможность создания полевого транзистора с 2D электронным газом (HEMT) на основе гетероперехода 3С–6H SiC.

Работа выполнена при частичной поддержке РФФИ (гранты N 00-02-16688 и 01-02-17657).

Список литературы

- Lebedev A.A., Strel'chuk A.M., Davydov D.V., Savkina N.S., Tregubova A.S., Kuznetsov A.N., Solov'ev V.A., Poletaev N.K. // Applied surface Science. 2001. V. 183. P. 421.
- [2] Лебедев А.А., Мосина Г.Н., Никитина И.П., Савкина Н.С., Сорокин Л.М., Трегубова А.С. // Письма в ЖТФ. 2001. Т. 27. С. 57.
- [3] Алтайский Ю.М., Авраменко С.Ф., Гусева О.А., Киселев В.С. // ФТП. 1987. Т. 21. С. 2072.
- [4] Лебедев А.А. // ФТП. 1999. Т. 33. С. 107.
- [5] Garret C.G.B., Brattain W.H. // Phys. Rev. B 1970. V. 19 (2). P. 376.
- [6] Sharma B.L., Purohit R.K. // Semiconductor heterojunctions. Pergamon Press, 1974.
- [7] Bozack M.J. // Phys. stat. sol. (b). 1997. V. 202. P. 549.
- [8] Bechstedt F., Kackell P., Zywiets A., Karch K., Adolphet B., Tenelsen K., Furthmuller J. // Phys. stat. sol. (b). 1997. V. 202. P. 35.