Расчеты электронной структуры кристаллического SrZrO₃ методом функционала плотности в приближении ЛКАО

© Р.А. Эварестов, А.В. Бандура, В.Е. Александров

Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Петергоф, Россия

E-mail: evarest@hm.csa.ru

(Поступила в Редакцию 25 марта 2005 г.)

Проведены расчеты четырех известных модификаций кристалла SrZrO₃ различной симметрии: кубической (*Pm3m*), тетрагональной (*I4/mcm*) и двух орторомбических (*Cmcm* и *Pbnm*) методом функционала плотности (DFT) в базисе линейной комбинации атомных орбиталей (ЛКАО). Выполнен сравнительный анализ электронных свойств рассмотренных кристаллов на основе рассчитанных зонных структур и плотностей распределения электронных состояний (полных и спроектированных на атомные состояния). Полученная на основе расчетов относительная стабильность различных модификаций хорошо согласуется с экспериментальными данными по фазовым переходам в кристалле SrZrO₃: менее симметричные низкотем-пературные модификации являюся более устойчивыми. На основе анализа заселенностей по Малликену и построения локализованных функций Ваннье для занятых энергетических зон проведено сравнение ионности химической связи в различных модификациях кристалла SrZrO₃.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 05-03-32002-а).

В последнее время перовскитоподобные кристаллы с общей формулой ABO_3 (A = Ga, Ba, Cd, Sr; B = Ti, Sn, Zr) стали объектами интенсивных экспериментальных исследований в связи с возможностями практического применения этих соединений для создания на их основе топливных элементов, газовых сенсоров, устройств хранения информации и приборов, реализующих их сегнетоэлектрические свойства [1].

Теоретически наиболее исследованы титанаты АТіО₃ (A = Ca, Sr, Ba) [2], менее изучены цирконаты. В частности, до нашей работы [3] был выполнен лишь один расчет электронной структуры кристалла SrZrO₃ в кубической модификации с пространственной группой симметрии *Рт3т* методом функционала плотности в базисе плоских волн [4]. В [3] нами приведены в краткой форме результаты выполненных впервые расчетов всех четырех модификаций кристалла SrZrO₃ методом функционала плотности в базисе плоских волн с оптимизацией геометрии (постоянных решетки и параметров, определяющих положение атомов в элементарной ячейке). В настоящей работе при оптимизированных значениях параметров кристаллической структуры метод функционала плотности применяется в приближении линейной комбинации атомных орбиталей (ЛКАО) для более детального исследования особенностей электронной структуры и природы химической связи в четырех различных модификациях кристалла SrZrO3: кубической (Pm3m), тетрагональной (I4/mcm) и двух орторомбических (Стст и Pbnm).

В разд. 1 приводятся данные о геометрической структуре рассматриваемых кристаллов, как экспериментальные [5], так и рассчитанные нами в [3]. В разд. 2 кратко рассмотрены использованная расчетная схема метод функционала плотности (DFT) в приближении ЛКАО — и ее возможности для оценки относительных энергий различных фаз кристалла ZrO₂. В разд. 3 проводится сравнение для различных модификаций кристалла SrZrO₃ их относительных устойчивостей (по энергии на формульную единицу), зонных структур и плотностей электронных состояний, как полных, так и спроектированных на атомные состояния. Изучено изменение ионности химической связи при фазовых переходах в цирконате стронция. В разд. 4 это изменение анализириется на основе простроения локализованных функций Ваннье для валентных энергетических зон. Разд. 5 содержит выводы.

1. Кристаллографические модификации SrZrO₃

Термические структурные исследования [5] показали, что кристаллы SrZrO₃ реализуются в четырех модификациях, существующих в разных температурных диапазонах, причем при повышении температуры происходят фазовые переходы 2-го рода с повышением симметрии системы. Обнаружена следующая последовательность фазовых переходов: из орторомбической модификации *Pbnm* в орторомбическую *Сmcm* примерно при 970 K, затем в тетрагональную *I4/mcm* при 1100 K и в кубической модификации составляет примерно 2400 K, вследствие чего именно эта фаза представляет особенный интерес с точки зрения высокотемпературных применений кристаллов SrZrO₃.

Кубическая модификация описывается пространственной группой *Рт3т* с простой кубической решеткой, кристаллографическая ячейка (КЯ) совпадает с прими-

Фаза	Pm3m	I4/mcm		Cmcm			Pbnm		
Параметр	а	а	b	а	b	С	а	b	С
Эксперимент [5]	4.154	5.870	8.309	8.270	8.273	8.259	5.786	5.815	8.196
Теория [3]	4.196	5.935	8.393	8.266	8.368	8.318	5.847	5.911	8.295

Таблица 1. Экспериментальные и оптимизированные значения векторов трансляций КЯ (Å) в кристалле SrZrO₃

тивной и содержит одну формульную единицу SrZrO₃. Атомы одного типа в ячейке являются кристаллохимически эквивалентными и занимают беспараметрические позиции Уайкова: a(0, 0, 0) - Zr, b(1/2, 1/2, 1/2) - Sr и d(1/2, 0, 0) - O. Единственным параметром, который изменяется при оптизизации структуры кристалла без понижения симметрии, является постоянная простой кубической решетки [2].

КЯ тетрагональной фазы (пространственная группа *I4/mcm*, объемноцентрированная решетка Браве) совпадает с удвоенной примитивной и содержит четыре формульные единицы SrZrO₃. Структура этой модификации описывается тремя параметрами — двумя параметрами тетрагональной решетки и одном свободным параметром для позиции Уайкова, занимаемой атомом кислорода.

Орторомбические модификации *Стст* (базоцентрированная решетка, КЯ содержит две примитивные ячейки) и *Pbnm* (простая решетка Браве, КЯ совпадает с примитивной) содержат четыре формульные единицы SrZrO₃ на примитивную ячейку. Обе структуры описываются тремя параметрами орторомбической решетки и свободными параметрами для соответствующих атомов.

В табл. 1 приводятся экспериментальные значения векторов трансляции КЯ четырех модификаций SrZrO₃ [5] и рассчитанные в [3]. Для модификаций с центрированной решеткой — тетрагональная (*I4/mcm*) и орторомбическая (*Cmcm*) — КЯ вдвое больше примитивной, причем во всех кристаллах вектора трансляций КЯ ортогональны друг другу. Как видно из табл. 1,

Таблица 2. Экспериментальные [5] и оптимизированные в [3] (указаны в скобках) значения координат симметрийно неэквивалентных атомов КЯ (в долях векторов трансляций КЯ) в кристалле SrZrO₃

Фаза	Атом	Координата				
Pasa Alom		x	у	Z		
I4/mcm	O ₂	0.265 (0.250)	0.765 (0.750)	0.000		
Cmcm	Sr_1	0.000	0.993 (0.989)	0.250		
	Sr ₂	0.000	0.490 (0.495)	0.250		
	O_1	0.269 (0.290)	0.000	0.000		
	O_2	0.000	0.230 (0.214)	$0.041 \ (0.048)$		
	O ₃	$0.286\ (0.3000)$	$0.252 \ (0.255)$	0.250		
Pbnm	Sr_1	0.003 (0.007)	0.526 (0.533)	0.250		
	O ₂	0.927 (0.923)	0.982 (0.979)	0.250		
	O ₃	0.217 (0.213)	0.284 (0.287)	0.035 (0.041)		

рассчитанные значения постоянных решетки для всех модификаций превосходят экспериментальные на 3-5%. Такое завышение характерно для DFT расчетов с учетом градиентной поправки в обменно-корреляционном функционале, но не слишком существенно при сопоставлении различных кристаллических модификаций. Табл. 2 содержит координаты только тех симметрийно неэквивалентных атомов КЯ, которые занимают позиции Уайкова со свободными параметрами. Координаты остальных атомов однозначно определяются заданием пространственной группы симметрии и координат занятой атомов позиции Уайкова. Сопоставление расчетных и экспериментальных значений координат атомов проведено в [3]. Отличие экспериментальных и расчетных данных не превышает 3-5%.

2. Выбор расчетной схемы DFT в приближении ЛКАО

Расчеты выполнены по программе CRYSTAL-2003 [6] методом DFT в базисе ЛКАО с использованным в [3] для оптимизации геометрии обменно-корреляционным потенциалом РВЕ [7] в приближении обобщенных градиентов GGA. Для атомов Sr и Zr использовались псевдопотенциалы Хэя-Уадта [8] в приближении малых остовов, что соответствует рассмотрению в качестве валентных 4s, 4p и 5s состояний атома Sr в конфигурации $4s^24p^65s^2$ и 4s, 4p, 4d и 5s состояний атома Zr в конфигурации $4s^24p^64d^25s^2$. В качестве базисных использованы атомные функции атома Sr из [9] и $8-411G^*$ атома Zr из [10], полученные с оптимизацией внешних орбитальных 5sp, 6sp и 5d для кристалла ZrO₂ при экспериментальной геометрии. Для атома кислорода использован полноэлектронный базис из [9], описывающий атом кислорода в конфигурации $1s^2 2s^2 2p^4$.

Для оценки возможностей приближения ЛКАО при расчете относительной стабильности различных кристаллических фаз с выбранным для атомов Zr и O базисом проведены расчеты методом Хартри–Фока (HF), методом функционала плотности с учетом градиентной поправки PBE (обменно-корреляционный потенциал из [3]) и гибридным методом B3LYP [11] электронной структуры трех модификаций кристалла ZrO₂ (кубической *Fm3m*, тетрагональной $P4_2/nmc$ и моноклинной $P12_1/c$) для экспериментальных значений параметров решетки и координат атомов в ячейке. В табл. 3 рассчитанные на формульную единицу относительные

Таблица 3. Ширина запрещенной зоны ΔE_{γ} (eV) в точке Г для кубической *Fm*3*m* (*c*), тетрагональной $P4_2/nmc(t)$ и моноклинной $P12_1/c$ (*m*) фаз кристалла ZrO₂ и их относительные энергии ΔE (eV/ZrO₂)

	HF	B3LYP	PBE	DFT-PW [12]
$\Delta E_{\gamma c}(4.5)$	14.0	5.5	3.7	3.9
$\Delta E_{\gamma t}(5.0)$	14.2	5.8	4.0	4.1
$\Delta E_{\gamma m}(5.3)$	13.8	5.7	3.9	4.0
$\Delta E_t(-0.06)$	+0.01	-0.04	-0.05	-0.05
$\Delta E_m(-0.12)$	-0.04	-0.10	-0.09	-0.11

Примечание. В скобках приведены экспериментальные значения, за нуль ΔE принята энергия на ячейку кубической фазы.

Таблица 4. Ширина запрещенной зоны ΔE_{γ} (eV) в точке Г для кубической *Pm3m c*, тетрагональной *I*4₂/*mcm* (*t*) а также орторомбических *Cmcm* (*o*1) и *Pbnm* (*o*2) фаз кристалла SrZrO₃ и их относительные энергии ΔE (eV/SrZrO₃), за нуль принята энергия на ячейку кубической фазы

	HF	B3LYP	PBE
$\Delta E_{\nu c}^*(5.6)$	13.0	5.0	3.3
$\Delta E_{\gamma t}$	13.0	5.0	3.3
$\Delta E_{\gamma o 1}$	13.2	5.2	3.5
$\Delta E_{\gamma o 2}$	13.5	5.4	3.6
ΔE_t	0.00	0.00	0.00
ΔE_{o1}	-0.16	-0.23	-0.24
ΔE_{o2}	-0.19	-0.28	-0.29

Примечание. Для кубической фазы приведена разность энергий между дном зоны проводимости в точке Γ и вершиной валентной зоны в точке *X*. В скобках приведено экспериментальное значение.

энергии (за нулевую принята энергия для кубической фазы) сравниваются с экспериментальными данными и результатами расчетов [12] методом функционала плотности в базисе плоских волн (PW), методом HF, методом функционала плотности с учетом градиентной поправки PBE (обменно-корреляционный потенциал из [3]) и гибридным методом B3LYP [11]. Приводятся также рассчитанные и экспериментальные значения ширины запрещенной зоны (ΔE_{γ}). Из табл. 3 видно, что только при учете электронной корреляции удается правильно передать относительные энергии различных фаз, причем полученные в схемах PBE и B3LYP результаты близки. Ширина запрещенной зоны ближе к экспериментальной в гибридной схеме расчета, а в расчете по методу HF сильно завышена.

Для кубической модификации кристалла $SrZrO_3$ имеется 46 электронов на ячейку (23 занятые энергетические зоны, из которых три относятся к остовным 1s состояниям кислорода). Для тетрагональной модификации число электронов и занятых зон удваивается, а для орторомбических возрастает в 4 раза. Суммирование по зоне Бриллюэна проводилось по специальным точкам типа Монкхорста–Пака (МП). Для кубического изотропного кристалла (*Pm3m*) использовался набор специальных то-

чек $8 \times 8 \times 8$, что соответствует моделированию бесконечного кристалла циклическим кластером из 512 примитивных ячеек [13]. Для того чтобы обеспечить примерно одинаковую плотность точек **k** в направлении каждого из трех векторов обратной решетки, набор специальных точек МП для некубических кристаллов сокращался обратно пропорционально вектору трансляции прямой решетки в соответствующем направлении. Все расчеты проводились для оптимизированной в [3] геометрии. Точность суммирования в прямой решетке выбрана 10^{-6} для всех интегралов на атомных функциях, кроме обменных, для которых эта точность взята равной 10^{-12} . Самосогласование по матрице плотности проводилось до достижения величины 10^{-7} а.u. для разности в полной энергии на ячейку двух последовательных итераций.

В табл. 4 приводится ширина энергетической щели и относительная энергия, полученные для каждой из рассмотренных кристаллических модификаций теми же методами, которые были использованы для расчетов ZrO₂. Для кубического кристалла проведено сопоставление экспериментального значения энергетической щели [14] с теоретическими значениями, полученными как в базисе плоских волн [4], так и в базисе ЛКАО [3]. Данные табл. 4 подтверждают выводы, сделанные на примере модификаций кристалла ZrO₂.

В обсуждаемых далее расчетах кристалла SrZrO₃, как и в [3], использован метод функционала плотности (вариант PBE).

3. Электронное строение различных модификаций SrZrO₃

На рис. 1–4 приводятся рассчитанные зонные структуры (a) и плотности распределения электронных состояний по энергиям (b) для четырех модификаций кристалла SrZrO₃. Из сопоставления полученных результатов видно, что электронные структуры кубической и тетрагональной фаз в целом имеют сходный характер, это имеет место и для двух орторомбических фаз. Существенное изменение в электронной структуре происходит при переходе от тетрагональной модификации к орторомбической.

Из приведенных на рис. 1 и 2 полных и парциальных плотностей распределения электронных состояний для кубического и тетрагонального кристаллов следует, что суммарная плотность состояний верхней валентной зоны в основном содержит 2p-состояния кислорода. Видно также, что 4d-состояния циркония вносят наибольший вклад в дно зоны проводимости. Эти особенности электронной структуры сохраняются и для орторомбических фаз.

В табл. 5 сравниваются заряды на атомах для всех четырех фаз, полученные в результате анализа заселенностей по Малликену. Заряды приводятся для всех кристаллохимически неэквивалентных атомов КЯ. Из

Рис. 1. Зонная структура и плотность электронных состояний для кубической модификации кристалла SrZrO₃ (группа симметрии *Pm*3*m*).

Рис. 2. Зонная структура и плотность электронных состояний для тетрагональной модификации кристалла SrZrO₃ (группа симметрии *I*4/*mcm*).

4

3

2

1

0

-1

-2

-3

-4

Energy, eV

-5 -6 Zr: d -7 Γ Ζ Т Г S-2 Y R Γ -6 0 2 4 k Energy, eV

Рис. 3. Зонная структура и плотность электронных состояний для орторомбической модификации кристалла SrZrO₃ (группа симметрии *Cmcm*).

Рис. 4. Зонная структура и плотность электронных состояний для орторомбической модификации кристалла SrZrO₃ (группа симметрии *Pbnm*).

Таблица 5	5. Малликеновские	заряды (е) н	а атомах в	кристал
ле SrZrO ₃				

Атом	Фаза					
	Pm3m	I4/mcm	Cmcm	Pbnm		
Sr_1	+1.855	+1.855	+1.828	+1.834		
Sr ₂			+1.845			
Zr	+2.035	+2.035	+2.085	+2.091		
O_1	-1.297	-1.297	-1.308	-1.307		
O_2		-1.297	-1.303	-1.309		
O_3			-1.311			

табл. 5 видно, что при переходе от кубической модификации к тетрагональной заряды на атомах практически не изменяются. Несильно отличаются между собой заряды на атомах и в двух орторомбических системах, в то время как при переходе от тетрагональной фазы к орторомбическим происходит заметное изменение атомных зарядов. Такой характер распределения зарядов на атомах также свидетельствует о заметном отличии электронной структуры кубической и тетрагональной модификаций от электронной структуры двух орторомбических фаз SrZrO₃.

Сравнительное изучение характера химической связи в различных модификациях кристалла SrZrO₃ проведено также с использованием локализованных функций Ваннье и рассмотрено в следующем разделе.

Локализованные функции Ваннье и химическая связь в кристалле SrZrO₃

Локализованные функции Ваннье (ЛФВ) $W_n(\mathbf{r} - \mathbf{g})$ (n = 1, ..., N — число ЛФВ на примитивную ячейку, \mathbf{g} — вектор трансляции прямой решетки) определяются через блоховские функции (БФ) $\psi_t(\mathbf{k}_j)$ для N энергетических зон соотношением

$$W_n(\mathbf{r} - \mathbf{g}) = L^{-1/2} \sum_{t=1}^N \sum_{j=1}^L U_{nt}(\mathbf{k}_j) \psi_{i\mathbf{k}_j}(\mathbf{r}) e^{-i\mathbf{k}_j \mathbf{g}}.$$
 (1)

Здесь L — число примитивных ячеек в циклической системе (области изменения векторов **g**), а точки \mathbf{k}_j (j = 1, 2, 3, ...) в зоне Бриллюэна удовлетворяют соотношению $\exp(-i\mathbf{k}_j\mathbf{T}) = 1$ для векторов трансляции **T** циклической системы как целого [15].

Матрицы $U(\mathbf{k}_j)$ унитарного преобразования (1) от Б Φ к Л Φ В находят на основе того или иного критерия локализации функций Ваннье. В [16,17] выбран критерий Бойса — требование минимума дисперсии Л Φ В относительно центра локализации **q** в прямой решетке

$$\min I_n = \min \int (\mathbf{r} - \mathbf{q})^2 |W_n(\mathbf{r})|^2 d\tau, \quad \mathbf{q} = \int |W_n(\mathbf{r})|^2 \mathbf{r} d\tau.$$
(2)

Для анализа химической связи в кристалле суммирование в (1) осуществляется по занятым энергетическим зонам [17] или группам занятых зон [16], что и определяет симметрию построенных ЛФВ как базисов неприводимых представлений локальной группы симметрии центроида \mathbf{q} [18]. Построенные ЛФВ описывают как двухатомные связи A-B атомов A и B в кристалле (\mathbf{q} находится на линии связи или вблизи нее), так и неподеленные пары электронов на атомах или ионы (\mathbf{q} находится вблизи соответствующего атомного ядра). Для получения БФ может быть использован как расчет в базисе плоских волн [16], так и в приближении ЛКАО [17]. В последнем случае ЛФВ можно выразить через функции исходного атомного базиса

$$W_n(\mathbf{r}) = \sum_{\mu=1}^{M} \sum_{\mathbf{g}} C_{\mu n}^{\mathbf{g}} \varphi_{\mu}(\mathbf{r} - \mathbf{g}), \qquad (3)$$

где коэффициенты $C_{\mu n}^{\mathbf{g}}$ относятся к атомной функции φ_{μ} в ячейке \mathbf{g} и связаны с аналогичными коэффициентами $a_{\mu t}^{\mathbf{k}}$ в БФ $\psi_{i\mathbf{k}_{j}}$ соотношением

$$C_{\mu n}^{\mathbf{g}} = L^{-1} \sum_{t=1}^{N} \sum_{j=1}^{L} U_{nt}(\mathbf{k}_j) E^{i\mathbf{k}_j \mathbf{g}} a_{\mu t}^{\mathbf{k}_j}.$$
 (4)

Вклад атома A из ячейки g в заселенность n-й ЛФВ (полная заселенность ЛФВ равна 2) определяется соотношением

$$q_{An}^{\mathbf{g}} = 2\sum_{A} \sum_{\mu \in A} \sum_{\nu} \sum_{\mathbf{g}'} C_{\mu n}^{\mathbf{g}} C_{\nu n}^{\mathbf{g}+\mathbf{g}'} S_{\mu \nu}^{\mathbf{0}\mathbf{g}'},$$
(5)

причем $\sum_{A} \sum_{g} q_{An}^{g}$ равна 12 для любого n = 1, 2, ..., N(суммирование проводится по всем атомам и ячейкам выбранной циклической системы) и $S_{\mu\nu}^{0g'}$ — интегралы перекрывания базисных атомных функций. Очевидно, суммарное число электронов на примитивную ячейку $n_e = 2N$. В силу унитарности преобразования (1) атомные заселенности по Малликену удовлетворяют соотношению

$$q_{A} = 2\sum_{A}\sum_{n\mathbf{g}} q_{An}^{|bfg|} = 2\sum_{t=1}^{N}\sum_{\mu\in A}\sum_{\nu\mathbf{g}'}\sum_{\mathbf{k}\mathbf{k}'} a_{\mu t}^{\mathbf{k}} a_{\nu t}^{\mathbf{k}'} S_{\mu\nu}^{\mathbf{0}\mathbf{g}'}, \quad (6)$$

т.е. соответствуют результатам традиционного анализа заселенностей на исходном атомном базисе.

Отметим, что процедура анализа заселенностей может быть проведена и на базисе функций Ваннье атомного типа (ФВАТ), соответствующих минимальному базису и введенных в [19]. Однако в этом случае для построения ЛФВ необходимо использовать БФ не только занятых, но и вакантных состояний определяемых из требований симметрии [18]. Результаты анализа заселенностей в

Таблица 6. Характеристики локализованных функций Ваннье в кристалле SrZrO₃

Фаза, атом	λ_s	p_n	$q_{\mathrm{O}n}$	q_s	q_{px}	q_{py}	$q_{\it Pz}$
Pm3m	1.183	0.999	0.918	0.136	0.005	0.778	0
	1.183	0.999	0.918	0.136	0.778	0.005	0
	1.302	0.610	0.870	0.343	0.064	0.064	0.403
	1.300	0.610	0.870	0.341	0.066	0.066	0.400
Pbnm, O_1	1.158	1.050	0.928	0.193	0.694	0.043	0
	1.175	1.011	0.921	0.147	0.001	0.775	0
	1.296	0.599	0.872	0.308	0.107	0.047	0.414
	1.296	0.599	0.872	0.308	0.107	0.047	0.414
Pbnm, O ₂	1.182	0.994	0.919	0.138	0.179	0.164	0.439
	1.153	1.041	0.930	0.196	0.263	0.289	0.184
	1.293	0.605	0.873	0.308	0.267	0.146	0.155
	1.293	0.601	0.873	0.316	0.161	0.269	0.131

базисе ФВАТ отличаются от таковых в исходном атомном базисе и в большинстве случаев более правильно описывают химическую связь в кристалле по сравнению с традиционным анализом заселенностей. Для анализа атомных заселенностей в кристалле используют также технику проектирования [20], не связанную с построением ЛФВ.

Для характеристики степени локализации ЛФВ вводят [17] индекс

$$\lambda_n = \left[\sum_{A} \sum_{\mathbf{g}} (q_{An}^{\mathbf{g}})^2\right]^{-1},\tag{7}$$

равный 1, если ЛФВ практически локализована в окрестности отдельного атома, и больший 1 в остальных случаях (для ЛФВ в центре связи этот индекс равен 2).

Для оценки ионности химической связи между атомами A (с координатой \mathbf{r}_A) и B (с координатой \mathbf{r}_B), описываемой центрированной в точке \mathbf{q}_n функцией Ваннье с номером n вводят индекс

$$p_n = 2 \frac{(\mathbf{q}_n - \mathbf{r}_B)(\mathbf{r}_A - \mathbf{r}_B)}{|\mathbf{r}_A - \mathbf{r}_B|^2} - 1.$$
(8)

Предполагается, что для атомов *A* и *B* вклад заселенностей в данную функцию Ваннье является наибольшим по сравнению с другими атомами. Для чисто ионной связи индекс (8) равен 1, для чисто ковалентной нулю, промежуточные значения индекса можно связать со степенью ионности химической связи.

Для изучения химической связи с кристалле SrZrO₃ нами с помощью программы CRYSTAL [5] вычислены ЛФВ для занятых энергетических зон и рассчитаны характеристики локализации для двух верхних валентных зон (состоящих из 15 ветвей для кубической модификации, 30 и 60 ветвей для тетрагональной и орторомбической модификации соответственно). Нижняя из указанных зон — гибридная (образована 2*s*-состояниями атомов кислорода и 4*p*-состояниями атома Sr), верхняя валентная зона, как видно из рис. 1–4, является кислородной 2*p*-зоной. В соответствии с определениями (7), (8) и (5) в табл. 6 приведены (для кубической и орторомбической модификаций) численные значения индекса делокализации, степень ионности химической связи Zr–O и вклад в заселенность атома кислорода (без учета спина) для симметрийно-неэквивалентных функций Ваннье верхней валентной зоны. В последних четырех столбцах даны заселенности *s* и *p* функций атома кислорода, вблизи которого центрирована соответствующая функция Ваннье.

В кубической модификации все три атома кислорода в примитивной ячейке симметрийно-эквивалентны и вблизи каждого из них центрировано по четыре функции Ваннье. Пусть атом кислорода и два ближайших к нему атома Zr расположены по оси z. Как видно из табл. 6, две из четырех функций Ваннье (рис. 5, a и b) направлены перпендикулярно линии связи вдоль осей х и у соответственно (это подтверждает и анализ соответствующих вкладов в заселенность), ионность связи Zr-O, описываемой ими, близка к 1, т.е. это практически кислородные p_x и p_y орбитали в кристалле. Две другие локализованные орбитали (рис. 5, c и d) эквивалентны, направлены почти точно вдоль оси z и, как видно из заселенностей, приблизительно соответствуют гибридным sp₂ орбиталям кислорода. Для этих орбиталей индекс ионности связи (0.61) заметно отличается от 1, что подтверждает существенную степень ковалентности связи Zr-O, проявляющуюся и в значениях зарядов на атомах (табл. 5). Центр локализации q для первых двух функций Ваннье отстоит от атома кислорода на 0.25 Å, для двух оставшихся — на 0.44 Å, соответствующие расстояния от линии связи Zr-O равны 0.24 и 0.16 Å. Эти величины коррелируют с приведенной выше интерпретацией локализованных орбиталей.

В тетрагональной модификации характеризующие химические связи индексы локализованных на атомах кислорода функций Ваннье мало изменяются по сравнению с кубической модификацией и близки также для симметрийно неэквивалентных атомов кислорода. Это коррелирует и с практически одинаковыми зарядами на атомах для кубической и тетрагональной модификацией (табл. 5).

В орторомбической модификации, как видно из табл. 5, локализованные на симметрийно неэквивалентных атомах кислорода и направленные вдоль связей Zr–O функции Ваннье (рис. 5, g и h) также мало изменяются по сравнению с кубической модификацией, хотя чистая sp_z гибридизация им уже не соответствует (\angle ZrOZr = 155°, и в силу понижения симметрии более заметным оказывается вклад орбиталей p_x и p_y в заселенности функций Ваннье). Что касается двух других пар локализованных орбиталей (рис. 5, е и f), то их ориентация отличается от ориентации соответствующей пары в кубическом кристалле, а суммарный вклад *p*-орбиталей в эти функции несколько меньше,

Рис. 5. ЛФВ для атомов кислорода кубической (a, b, c, d) и орторомбической (e, f, g, h) модифицаций кристалла SrZrO₃. Распределение электронной плотности представлено: a, b, e и f — в плоскости, образованной ближайшими к кислороду атомами Sr; c и d — в плоскости σ_x ; g и h — в плоскости, проходящей через связанные атомы Zr–O–Zr. Символы элементов обозначают положение атомов в рассмотренных плоскостях.

чем в случае кубической фазы. Заметной разницы между локализованными орбиталями атомов O₁ и O₂ не наблюдается.

При попытке ограничиться только верхней валентной зоной среди построенных локализованных орбиталей не удается выделить такие, которые соответствовали бы направленным Zr–O связям. Таким образом, *s*-зона кислорода вносит существенный вклад в распределение плотности валентных электронов. Вместе с тем при анализе энергетического спектра и связанной с ним плотности энергетических состояний *p*- и *s*-зоны кислорода можно рассматривать как относительно независимые. Например, как отмечалось в разд. 3, полная плотность состояний в области энергий для верхней валентной зоны практически совпадает с парциальной плотностью *p*-состояний кислорода.

Проведенное выше рассмотрение показывает, что использование при анализе химической связи в кристалле локализованных функций Ваннье существенно дополняет и детализирует информацию, получаемую при анализе заселенностей.

5. Выводы

В настоящей работе рассчитана электронная структура (зонный энергетический спектр, плотности электронных состояний и функции Ваннье) четырех кристаллических модификаций кристалла SrZrO₃ методом функционала плотности в приближении ЛКАО при оптимизированной ранее в базисе плоских волн атомной структуре. Основные результаты работы заключаются в следующем.

 В согласии с экспериментальными данными энергетическая стабильность меньше для высокотемпературных (тетрагональной и кубической) модификаций по сравнению с низкотемпературными орторомбическими модификациями.

 Рассчитанная ширина запрещенной зоны выше для низкотемпературных модификаций, что согласуется с полученной на основе анализа заселенностей по Малликену большей ионностью химической связи для низкотемпературных модификаций.

3) Рассчитаны и проанализированы ЛФВ для двух верхних валентных энергетических зон. Полученные в расчете характеристики функций Ваннье (положения центра локализации, индекс ионности, атомные вклады в заселенности локализованных орбиталей) позволили количественно описать ковалентную составляющую химической связи в рассмотренных кристаллах.

Список литературы

- T. Matsuda, S. Yamanaka, K. Kurosaki, S. Kobayashi. J. Alloys and Compounds 351, 43 (2003).
- [2] E. Heifets, R.I. Eglitis, E.A. Kotomin, J. Maier, G. Borstel. Phys. Rev. B 64, 235 417 (2001).
- [3] R.A. Evarestov, A.V. Bandura, V.E. Alexandrov, E.A. Kotomin. Phys. Stam. Sol. (b) 242, 2, R11–R13 (2005).

- [4] E. Mete, R. Shaltaf, S. Ellialtioglu. Phys. Rev. B 68, 035119 (2003).
- [5] B.J. Kennedy, C.J. Howard, B.C. Chakoumakos. Phys. Rev. B 59, 4023 (1999).
- [6] V.R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, N.M. Harrison, K. Doll, B. Civalleri, T. Bush, Ph. D'Arco, M. Llunell. CRYSTAL-2003, User's Manual. Torino University, Torino (2003).
- [7] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [8] P.J. Hay, W.R. Wadt. J. Chem. Phys. 82, 270 (1984).
- [9] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel. Comp. Mater. Sci. 29, 165 (2004).
- [10] S. Gennard, F. Cora, C.R.A. Catlow. J. Phys. Chem. B 103, 10158 (1999).
- [11] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [12] A.D. Dash, N. Vast, P. Baranek, M. Cleynet, L. Reining. Phys. Rev. B 70, 245 116 (2004).
- [13] R.A. Evarestov, V.P. Smirnov. Phys. Rev. B 70, 233101 (2004).
- [14] Y.S. Lee, J.S. Lee, T.W. Noh, D.Y. Byum, K.S. Yoo, K. Yamaura, E. Takayama-Muromachi. Phys. Rev. B 67, 113 101 (2003).
- [15] Р.А. Эварестов, И.И. Тупицын. ФТТ 44, 1582 (2002).
- [16] N. Marzari, D. Vanderbilt. Phys. Rev. B 56, 12847 (1997).
- [17] C.M. Zicovich-Wilson, R. Dovesi, V.R. Saunders. J. Chem. Phys. 115, 9708 (2001).
- [18] Р.А. Эварестов, Д.Е. Усвят, В.П. Смирнов. ФТТ 45, 1972 (2003).
- [19] V.P. Smirnov, R.A. Evarestov, D.E. Usvyat. Int. J. Quantum. Chem. 88, 642 (2002).
- [20] И.И. Тупицын, Р.А. Эварестов, В.П. Смирнов. ФТТ 47, 10, 1768 (2005).