06;12

О механизмах токопрохождения в гетероструктуре *n*-ln₂Se₃-*p*-GaSe

© С.И. Драпак, З.Д. Ковалюк, В.В. Нетяга, В.Б. Орлецкий

Институт проблем материаловедения им. Францевича НАН Украины, Черновицкое отделение E-mail: chimsp@unicom.cv.ua

Поступило в Редакцию 5 февраля 2002 г.

Представлены результаты исследования вольт-амперных и вольт-фарадных характеристик впервые изготовленной фоточувствительной радиационностойкой анизотропной гетероструктуры *n*-In₂Se₃-*p*-GaSe. Показано, что электрические свойства гетероструктуры зависят от способа изготовления, что обусловлено изменением зонных параметров селенида индия.

Селениды галлия GaSe и индия In_2Se_3 принадлежат к широкому классу слоистых полупроводников. И если первый из них является хорошо известным полупроводником, на основе которого создан ряд фоточувствительных диодных структур, например [1,2], то второй — мало исследованный материал. В литературе существует всего несколько работ, посвященных исследованию оптических и электрических свойств In_2Se_3 [3–5]. Отличительной особенностью In_2Se_3 является значительная дефектность структуры, а следовательно, и повышенная радиационная стойкость. В настоящем сообщении приведены результаты исследования фоточувствительных радиационно-стойких гетероструктур In_2Se_3 -GaSe, которые могут представлять интерес для оценки путей оптимизации основных фотоэлектрических характеристик.

1

Рис. 1. Зонная диаграмма ГП In_2Se_3 -GaSe, изготовленного методом посадки на оптический контакт (*a*) и меодом вакуумного напыления (*b*) в условиях термодинамического равновесия. Все величины указаны в электрон-вольтах.

Гетеропереходы (ГП) создавались двумя способами: методом посадки на оптический контакт (толщина пластины из GaSe составляла $1 \div 1.2\,\text{mm}$, а из In $_2\text{Se}_3 - 0.1 \div 0.12\,\text{mm})$ и методом вакуумного напыления In₂Se₃ на свежесколотые подложки из GaSe при давлениях не ниже чем $2 \cdot 10^{-5} \, \text{mm} \, \text{Hg}$ (температура подложки составляла ≈ 150° С). Для изготовления (ГП) использовался моноселенид галлия p-типа с концентрацией носителей заряда $p \approx 10^{14} \, \mathrm{cm}^{-3}$ и In₂Se₃ *п*-типа проводимости со структурой гексагональной *α*-фазы (ширина запрещенной зоны $E_g = 1.42$ eV [3]), выращенный методом Бриджмена, с $n \approx 10^{16} \, {\rm cm}^{-3}$. Концентрация носителей заряда в обоих полупроводниках определялись из холловских измерений при комнатной температуре. Омические контакты изготовлялись с помощью In-Ga амальгамы с последующим вплавлением индия со стороны In₂Se₃ и контактола на основе серебряной пасты со стороны GaSe. Созданные таким образом структуры являются перспективными для использования в качестве фоточувствительных устройств. Так, например, при освещении ГП светом мощностью 100 mW/cm² напряжение холостого хода было равным ~ 0.35 и 0.72 V для структур, изготовленных методом оптического контакта и методом вакуумного напыления соответственно. Как показали измерения вольт-амперных характеристик (ВАХ), данные структуры

обладают ярко выраженными диодными свойствами в исследованном диапазоне температур (233-333 K): при напряжении 1.5 ÷ 2 V прямой ток превышает обратный более чем в 10³ раз. На рис. 1 представлены зонные диаграммы гетероструктур In₂Se₃-GaSe, приготовленных различными способами. При построении диаграмм использовались данные о физических параметрах GaSe [6], In_2Se_3 [3–5], концентрациях основных носителей в полупроводниках и величинах диффузионного потенциала ϕ_0 , определенных из вольт-фарадных характеристик (B ΦX). Учитывался и факт различия фазовых составов термически осажденных пленок In₂Se₃ и этого же материала, использованного для получения ГП методом оптического контакта. Анализ полученных рентгенодифрактограмм засвидетельствовал, что пленки состоят в основном из In₂Se₃ γ -модификации с $F_g = 2.0 \, \text{eV} \, [3]$. Кроме того, в пленках существует фаза гексагонального *α*-In₂Se₃ и фаза свободного индия. Измеренная при комнатной температуре равновесная концентрация носителей заряда в пленках составляла $n \approx 10^{15} \, \mathrm{cm}^{-3}$. Толщина области пространственного заряда (ОПЗ) определялась согласно формуле [7]:

$$W = \left[(2\varepsilon_0 \varepsilon_n \varepsilon_p (\varphi_0 - eV)(p - n)^2) / (e(\varepsilon_n n + \varepsilon_p p)np) \right]^{1/2}, \tag{1}$$

где ε_0 , ε_n , ε_p — диэлектрические проницаемости вакуума, In₂Se₃ и GaSe соответственно и при $\varepsilon_n = 9.53$ [3], $\varepsilon_p = 8.86$ [6] составляла $5 \cdot 10^{-4}$ сm для оптического контакта и $3 \cdot 10^{-4}$ сm для ГП, изготовленного методом вакуумного напыления.

Следует отметить, что величины контактной разности потенциалов, определенные из ВФХ (рис. 1) и рассчитанные по формуле [7]:

$$e\varphi_0 = (\chi_p + E_{gp} - E_{Fp}) - (\chi_n + E_{F_n}),$$
 (2)

в предположении, что сродство к электрону для селенидов индия есть величина приблизительно одинаковая (по аналогии с [8]) и составляет $\chi_n = 3.6 \,\text{eV}$ [9], хорошо согласовались между собой. В (2) $\chi_{p,n}$ -электронное сродство, $E_{Fp,Fn}$ — положение уровня Ферми для полупроводников *p*- и *n*-типов соответствино, E_{gp} — ширина запрещенной зоны полупроводника *p*-типа. При расчете принималось, что для GaSe $\chi_p = 3.6 \,\text{eV}$ [10]. Это обстоятельство, а также типичные для резких *p*-*n*-переходов или барьеров Шоттки ВФХ гетероструктур In₂Se₃—GaSe, созданных обоими способами, свидетельствуют о пренебрежительно малом влиянии инверсионного слоя в GaSe, возникающего в результате значительного изгиба зон (рис. 1).

Рис. 2. Прямые (*a*) и обратные (*b*) ветви ВАХ ГП In₂Se₃–GaSe, изготовленного методом посадки на оптический контакт (зависимости *1*, *2*, *5–8*) и методом вакуумного напыления (зависимости *3*, *4*, *9*, *10*) при температурах *T*, K: *1*, *3*, *5*, *9* — 333; *6* — 296; *7* — 274; *2*, *4*, *8*, *10* — 240.

Для определения механизмов прохождения тока в гетероструктурах измерялись ВАХ в прямом и обратном направлениях.

1. ГП, созданные методом оптического контакта. В области прямых смещений (0.1 ÷ 0.6 V), когда падением напряжения на базовом полупроводнике можно пренебречь, ВАХ ГП описывается экспоненциальным законом: $I \sim \exp(eV/nkT)$, где диодный коэффициент сохраняет значение n = 2 во всем интервале исследуемых температур $T = 239 \div 332 \,\mathrm{K}$ (рис. 2 *a*, зависимости 1, 2). Согласно теории Саа-Нойса-Шокли [7], такой наклон ВАХ характерен для рекомбинационных процессов в ОПЗ при малых уровнях инжекции. Однако определенная из наклона температурной зависимости рекомбинационного тока насыщения (рис. 3, зависимость 1) энергия не равна половине запрещенной зоны GaSe ($E_{gp}/2 = 1 \, \text{eV}$), а составляет 0.58 eV, что значительно меньше ожидаемой величины. Такая разница объясняется тем, что рекомбинация происходит не через простые единичные центры, а через донорно-акцепторные пары. В этом случае температурная зависимость J_{0s} от T несколько другая, чем для рекомбинации через простые единичные центры:

$$J_{0s} \sim \exp\left[-(E_{gp} - \Delta E_t)/2kT\right] = \exp(-E'_{gp}/2kT), \qquad (3)$$

Рис. 3. Температурная зависимость плотности тока насыщения J_{0s} при прямом смещении для ГП In₂Se₃–GaSe, изготовленного методом посадки на оптический контакт (1), а также сопоставление формулы (9) с зависимостью обратного тока в ГП In₂Se₃–GaSe изготовленного методом вакуумного напыления от напряжения при *T*, K: 2 — 333, 3 — 240.

где ΔE_t — энергетическое положение примесного уровня. Принимая во внимание, что экспериментальные значения $E'_g = 1.16 \,\text{eV}$ получим глубину примесного уровня $\Delta E_t = E_{gp} - E'_{gp} = 0.84 \,\text{eV}$. Полный обратный ток ГП при |eV| > 2kT описывается формулой [7]:

$$J_{rev} = en_i W / \tau_i + (eD_n n_{p0} / L_n + eD_p p_{n0} / L_p),$$
(4)

где n_t — собственная концентрация носителей тока; n_{p0} , p_{n0} и D_n , D_p — равновесные концентрации и коэффициенты диффузии неосновных носителей заряда в полупроводниках p- и n-типа соответственно; τ_i — время жизни носителей заряда в ОПЗ; L_n и L_p — диффузионная длина неосновных носителей заряда в полупроводниках p- и n-типа соответственно. В формуле (4) первое слагаемое описывает процессы генерации носителей заряда в ОПЗ, второе — диффузии неосновных носителей заряда в ОПЗ, второе — диффузии неосновных носителей заряда в ОПЗ, второе — диффузии неосновных носителей заряда в Плине обратные ветви ВАХ оптического контакта

In₂Se₃–GaSe при различных температурах (зависимости 5–8). Причем, поскольку насыщение не является характерным для генерационных токов, то при обратном смещении $|V| \ge 1$ V при комнатной температуре доминирующим механизмом токопереноса становится диффузия неосновных носителей заряда: дырок из In₂Se₃ и электронов из GaSe. Участки, на которых обратный ток выходит на насыщение, характерны для диффузионных токов в структурах с толстой базой [7]. Однако, как известно, с увеличением температуры вклад диффузионных токов в общий ток должен возрастать и при увеличении температуры должны были бы наблюдаться более протяженные участки тока насыщения [7]. Экспериментальные данные в нашем случае свидетельствуют об обратной тенденции. Наибольший участок тока насыщения наблюдается при T = 240 K, а при температурах выше комнатной обратные ВАХ уже практически не выходят на насыщение. Такое поведение не может быть объяснено увеличением роли генерационных токов (первое слагаемое в формуле (4)), поскольку с ростом температуры они растут медленнее (как n_i), в то время как токи диффузии быстрее (как n_i^2). Поэтому следует предположить, что в обратный ток делают свой вклад туннелирование и токи утечки. Участки, когда доминирующим механизмом токопереноса становится туннелирование, наблюдаются при увеличении обратного смещения до 3 ÷ 3.5 V при комнатной температуре для различных партий образцов. При этом ВАХ может быть условно аппроксимирована выражением $J \sim V^{4.5}$, что соответствует мягкому пробою.

2. ГП, созданные методом вакуумного напыления. В этом случае значение диодного коэффициента не является постоянной величной для всего исследуемого температурного интервала (рис. 2, *a*, зависимости 3, 4). При комнатной температуре n = 2.05, что, как и для оптического контакта, характерно для рекомбинации в ОПЗ. При понижении температуры до T = 240 К диодный коэффициент близок к $n \approx 3$, что свидетельствует о преобладании туннелирования. При температурах выше комнатной (n = 1.8) заметной становится диффузионная компонетна тока. Общий ток тогда можно представить:

$$J = J_d + J_{gr} + J_{tun}.$$
 (5)

Так как оба контактирующих полупроводника не являются вырожденными, то прямое межзонное туннелирование невозможно. В это же время возможно непрямое туннелирование, когда электроны со дна

зоны проводимости In_2Se_3 туннелируют на локальный уровень E_1 и оттуда переходят в валентную зону *p*-GaSe. В этом случае

$$J_{tun} = \alpha \cdot N_1 T_t, \tag{6}$$

где α — постоянная, N — плотность локальных центров на уровне E_1 , а вероятность туннелирования:

$$T_t \approx \exp\left[(-4m^{*1/2}2^{1/2}E^{*3/2}\pi)/3e\hbar E\right].$$
(7)

В (7) E^* — энергия туннелирования и E — электрическое поле. Подстановка в (7) выражения (6) с известным значением электрического поля в резком переходе и E^* в функции высоты барьера приводит к выражению для туннельного тока [11]:

$$J_{tun} \cong \alpha \cdot N_1 \exp\left[-\alpha_1(E_g - eV)\right],\tag{8}$$

определяющему поведение прямого тока при низких температурах. С ростом температуры механизм токопереноса начинает изменяться: преобладающий вклад начинает вносить генерационнорекомбинационная компонента тока $J_{gr} = (en_i W/\tau_i) \exp(eV/2kT)$. При дальнейшем увеличении температуры заметной становится диффузионная компонента тока: $J_d = (eD_n n_{p0}/L_n + eD_p p_{n0}/L_p) \exp(eV/kT)$.

Обратный ток гетероструктуры практически не зависит от температуры, но вместе с тем наблюдается сильная полевая зависимость. Такое поведение тока характерно для туннелирования [12]. Причем обратные ветви при напряжении |V| > 0.3 V могут быть аппроксимированы выражением $J \sim V^m$ и имеют два участка в зависимости от смещения. При |V| < 1 V $m_1 = 2.2$, а при более высоком напряжении $m_2 = 4.5$ (рис. 2, b, зависимости 9, 10). При этом, если в области с меньшими значениями *m*, по-видимому, туннелирование с участием локальных центров преобладает, то во второй, с показателями m_2 и большим смещением имеет место межзонное туннелирование. И действительно, для барьера с параболическим ходом потенциала туннельный ток описывается выражением [7]:

$$J = A \frac{e^3 \sqrt{2m_n} V(\varphi_0 - eV)^{1/2} p}{2\pi^2 \hbar^2 \varphi_0^{1/2} (2\varepsilon \varepsilon_0 \varphi_0)^{1/2} s} \exp\left(-\frac{4}{3} \frac{\sqrt{m_n \varepsilon \varepsilon_0}}{\hbar p^{1/2}} \frac{\varphi_0^{3/2}}{\sqrt{\varphi_0 - eV}}\right), \quad (9)$$

где s — площадь ГП, ε и ε_0 — диэлектрические проницаемости вакуума и полупроводника соответственно.

Согласно (9), при туннелировании носителей заряда через барьер, ВАХ структура должна быть прямой линией в координатах $\ln(J(\varphi_0 - eV)^{-1/2})$ от $(\varphi_0 - eV)^{-1/2}$. Результат такого построения представлен на рис. З (зависимости 2, 3) и представляет собой супер-позицию двух прямых, что также свидетельствует о туннелировании через локальные центры (при малых смещениях) и о зон-зонном туннелировании (при увеличении напряжения).

В заключение отметим, что полученные данные по механизмам токопереноса в структурах In₂Se₃–GaSe следует учитывать при реализации возможных прикладных применений, в том числе в качестве радиационно-стойких преобразователей для видимой и ближней инфракрасной области.

Список литературы

- [1] Драпак С.И., Ковалюк З.Д. // Письма в ЖТФ. 2001. Т. 27. В. 18. С. 1–7.
- [2] Manasson V.A., Kovalyuk Z.D., Drapak S.I., Katerinchuk V.N. // Electronic Letters. 1990. V. 26. N 10. P. 664.
- [3] Julien C., Eddrief M., Balkanski M., Hatriricraniotis E., Kambas K. // Phys. Stat. Sol. 1985. V. (a) 88. N 2. P. 687–695.
- [4] De Blasi C., Drigo A.V., Micocci G., Tepore A. // J. Cryst. Growth. 1989. V. 94. N 2. P. 455–458.
- [5] Micocci G., Tepore A., Rella R., Siciliano P. // Phys. Stat. Sol. 1991. (a) 126. N 2. P. 437–442.
- [6] Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology New Ser. Group III: Crystal and Solid State Physics. V. 17, sv. F / Ed. by Madelung O. Berlin: Springer, 1983. 562 p.
- [7] Милнс А., Фойхт Д. Гетеропереходы и переходы металл-полупроводник. М., 1975. 432 с.
- [8] Бланк Т.В., Гольберг Ю.А., Калинина Е.В. и др. // ФТП. 2001. Т. 35. В. 5. С. 550–553.
- [9] Martinez-Pastor J., Segura A., Valdes J.L., Chevy A. // J. Appl. Phys. 1987.
 V. 21. N 2. P. 1477–1483.
- [10] Daniels R.R., Margaritondo G., Quaresima C., Perfetti P., Levy F. // J. Vac. Sci. Technol. 1985. V. A3. P. 979–980.
- [11] Chynoweth A.Q., Feldman W.L., Loqan R.A. // Phys. Rev. 1961. V. 121. P. 684.
- [12] Булярский С.В., Грушко Н.С. Генерационно-рекомбинационные процессы в активных элементах. М.: МГУ, 1995. 32 с.