05;09

Волноводно-щелевой 60 GHz фазовращатель на основе (Ba,Sr)TiO₃ сегнетоэлектрической пленки

© А. Козырев, М. Гайдуков, А. Гагарин, А. Тумаркин, С. Разумов

С.-Петербургский государственный электротехнический университет (ЛЭТИ)

E-mail: mcl@eltech.ru

В окончательной редакции 12 ноября 2001 г.

Представлены конструкция и СВЧ-характеристики сегнетоэлектрического фазовращателя на основе волноводно-щелевой линии, работающего в миллиметровом диапазоне длин волн ($f \sim 60 \text{ GHz}$). Параметр качества фазовращателя 32 deg/dB. Фазовращатель обеспечивает непрерывное изменение фазы до 255 deg. Сегнетоэлектрические пленки показали значения диэлектрических потерь tan $\delta = 0.04$ и управляемость $K \approx 1.7$, что является перспективным для их использования в данном диапазоне частот.

Исследования, проведенные ранее, продемонстрировали перспективность использования тонких сегнетоэлектрических пленок для перестраиваемых СВЧ-устройств и возможность успешной реализации на их основе фазовращателей СВЧ-диапазона до 30 GHz включительно [1,2]. Настоящая работа посвящена созданию фазовращателя на основе щелевой линии передачи с сегнетоэлектрической пленкой, работающего на частоте 60 GHz, который может быть использован в качестве прототипа элемента фазированной антенной решетки для автомобильных радиолокационных систем безопасности [3].

Конструкция фазовращателя на основе волноводно-щелевой линии показана на рис. 1. Сегнетоэлектрический элемент, представляющий собой отрезок щелевой линии на поверхности подложки из поликора (Al_2O_3) с пленкой $Ba_xSr_{1-x}TiO_3$ (BSTO) и медной металлизацией, устанавливался вдоль волновода в плоскости *E*-поля. Изменение фазового набега СВЧ-сигнала достигалось за счет изменения диэлектрической проницаемости сегнетоэлектрической пленки в зазоре щелевой линии

51

Рис. 1. Конструкция фазовращателя: *1* — сегнетоэлектрический элемент, *2* — сегнетоэлектрическая пленка, *3* — подложка (поликор), *4* — рабочий участок, *5* — пленка меди, *6* — пластина слюды с металлизацией, *7* — пластина слюды без металлизации, *8* — элементы волновода.

(длина рабочего участка 4 mm, ширина зазора ~ 6 μ m) под действием напряжения управления (U_b). Подача напряжения и конструктивное крепление сегнетоэлектрического элемента осуществлялись за счет изолирующих пластин слюды (толщина ~ 20 μ m) с медной металлизацией. Согласование волновых сопротивлений щелевой линии и

волновода достигалось с помощью трансформаторов, топология которых рассчитывалась по соотношениям, приведенным в [4].

Используемые в работе пленки были получены на технологической установке Leybold Z-400 ионно-плазменным ВЧ магнетронным "on-axis" распылением керамической мишени состава $Ba_x Sr_{1-x}TiO_3$ диаметром 76 mm. Осаждение пленок на подложки поликора размером 15×15 mm и толщиной $125 \,\mu$ m проводилось в атмосфере чистого кислорода при давлении ~ 10 Pa и температуре 905°C. Толщина получаемых пленок составляла ~ $(0.5 \div 1) \,\mu$ m. После осаждения пленки структура охлаждалась в чистом кислороде со скоростью $2 \div 3^{\circ}$ C/min [5]. Затем на поверхность BSTO пленки методом термического испарения наносилась пленка меди толщиной ~ $1 \,\mu$ m. Топология CBЧ-схемы фазовращателя формировалась жидкостной литографией. В качестве основы для создания сегнетоэлектрических элементов фазовращателя использовались BSTO пленки состава x = 0.4 (пленка № 1) и x = 0.3 (пленка № 2). Диэлектрическая проницаемость пленок составляла $\varepsilon(U_b = 0) = 320$ для образцов № 1 и 2 соответственно.

На рис. 2 представлены экспериментальные и расчетные зависимости фазового набега от приложенного напряжения управления. Расчет фазового сдвига проводился на основе теории многослойных волноводнощелевых структур [6]. В экспериментах образец 1 показал вносимые СВЧ-потери $S_{21} \sim -15 \, \text{dB}$ вблизи $f \sim 60 \, \text{GHz}$. Потери уменьшались до $-8 \, \text{dB}$ при приложении к рабочему элементу постоянного напряжения управления до 300 V. Непрерывное изменение фазы СВЧсигнала при этом составило $\Delta \varphi = 394 \, \text{deg}$. Образец № 2 показал затухание СВЧ-сигнала $S_{21} \sim -8 \, \text{dB}$ с уменьшением до $-6 \, \text{dB}$ при 300 V и $\Delta \varphi = 255 \, \text{deg}$. Согласующие элементы не были оптимизированы, что привело к $S_{11} = -4 \, \text{dB}$. Основным параметром, характеризующим фазовращатель, является его параметр качества $F[\text{deg/dB}] = \Delta \varphi/S_{21}$, который для образца 1 соответствует $F \sim 26 \, \text{deg/dB}$ и для образца 2 — $F = 32 \, \text{deg/dB}$ (F рассчитан по наибольшему значению S_{21}).

Механизмами СВЧ-потерь, определяющими значение S_{21} для волноводно-щелевой линии, являются потери в сегнетоэлектрической пленке (tan δ) и потери в металлических электродах. Для определения декремента затухания, обусловленного потерями в металле (α_m), проводились измерения добротности волноводно-щелевых резонаторов на поликоровых подложках без пленки сегнетоэлектрика. На рис. 3 приведены полученные зависимости потерь в металле от ширины щели для частот 30

Рис. 2. Экспериментальные и расчетные характеристики фазовращателя: *I* — расчет (образец № 1), *2* — расчет (образец № 2), *3* — эксперимент (образец № 1), *4* — эксперимент (образец № 2).

и 60 GHz. Изменение волнового сопротивления линии передачи при увеличении эффективной диэлектрической проницаемости подложки (ε_{eff}) за счет сегнетоэлектрической пленки приводит к росту потерь в металле пропорционально ~ ε_{eff} [4] по отношению к данным, приведенным на рис. 2. Расчет ε_{eff} с учетом сегнетоэлектрической пленки показывает, что металлические потери для щелевой линии с шириной зазора 6 μ m могут быть оценены как $\alpha_m \sim 0.5$ dB/mm. На основании измерения вносимого затухания сегнетоэлектрической линии и оценок потерь в металле можно определить потери в сегнетоэлектрической пленке (α_d). Для линий на основе пленок № 1 и 2 значения α_d составляли

Рис. 3. Декремент затухания, определяющийся СВЧ-потерями в металлической пленке щелевой линии.

 $\alpha_{d1} \approx 3.5 \, \text{dB/mm}$ и $\alpha_{d2} \approx 1 \, \text{dB/mm}$. Таким образом, для данного диапазона частот (~ 60 GHz) выявляется преобладание диэлектрических потерь над потерями в металле и соответственно устанавливается ведущая роль качества сегнетоэлектрической пленки. Именно снижение роли металлических потерь на этих частотах позволяет уменьшить зазор линии до ~ 6 μ m, что обеспечивает возможность снижения управляющих напряжений.

Анализ α_d позволяет оценить тангенс потерь пленок № 1 и 2 как tan $\delta_1 \approx 0.12$ и tan $\delta_2 \approx 0.04$. Пленки продемонстрировали управляемость $K_1 = \varepsilon(0V)/\varepsilon(300 V) \approx 2$ и $K_2 \approx 1.7$. Параметр качества сегнетоэлектрических пленок, определяющий пригодность их использования на CBЧ, описывается соотношением $p = (K - 1)^2/K$ tan δ_0 tan δ_U [7], где tan δ_0 и tan δ_U — потери в сегнетоэлектрической пленке без приложенного напряжения управления и при $U_b \neq 0$. Для пленки № 2 $p \approx 250$,

что позволяет создание управляющих устройств миллиметрового диапазона с очень высокими параметрами. В частности, при оптимизации согласующих элементов фазовращателя его параметр качества может достигнуть F = 40 deg/dB.

Список литературы

- [1] Козырев А., Иванов А., Солдатенков О. и др. // Письма в ЖТФ. 1999. Т. 25. В. 20. С. 78–83.
- [2] Carlson C.M., Rivkin T.V., Parilla P.A. et al. // Applied Physics Letters. 2000.
 V. 76. N 14. P. 1920–1922.
- [3] Qian Y., Itoh T. // IEEE Transactions on MTT. 1998. V. 46. N 11. P. 1891–1900.
- [4] *Gupta K.C., Ramesh Garg, Inder Bahl* et al. Microstrip Lines and Slotlines, Second Edition. Artech House, 1996.
- [5] Rasumov S., Tumarkin A., Buslov O., Gaidukov M., Gagarin A., Ivanov A., Kozyrev A. Electrical properties of magnetron sputtered thin BaSrTiO₃ films depending on deposition conditions. Integrated ferroelectrics, 2001 (in press).
- [6] Мироненко И.Г., Иванов А.А. // Письма в ЖТФ. 2001. Т. 27. В. 13. С. 16-21.
- [7] Вендик О.Г., Мироненко И.Г., Тер-Мартиросян Л.Т. // Изв. АН СССР. 1987. Т. 51. В. 10.