05;06;12 Квантовые точки в пленках YBa₂Cu₃O_{6+x} с тетрагональной структурой

© В.Д. Окунев, З.А. Самойленко, В.А. Исаев, A. Klimov, S.J. Lewandowski

Донецкий Физико-технический институт НАН Украины Instytut Fizyki PAN, AI. Lotnikow 32, 02–668 Warszawa, Poland E-mail: okunev@host.dipt.donetsk.ua

Поступило в Редакцию 4 июня 2001 г.

Представлены свидетельства наличия кластеров с металлической проводимостью в эпитаксиальных пленках $YBa_2Cu_3O_{6+x}$ с тетрагональной структурой (x < 0.4). Несмотря на диэлектрическое состояние образцов, в их оптических спектрах выявляются области поглощения свободными носителями заряда. Наличие металлических кластеров, которые при низких температурах превращаются в квантовые точки, ответственные за участки $\rho(T) = \text{const}$ на температурных зависимостях сопротивления, подтверждается данными рентгеноструктурного анализа. Процесс кластерообразования усиливается при воздействии на образцы лазерным излучением (KrF) высокой мощности.

В недавно опубликованных работах [1–3] сообщалось о наличии участков $\rho \cong \rho(T) = \text{const}$ при $T < T_{\text{crit}} = 130-240$ К на температурных зависимостях сопротивления диэлектрических пленок YBaCuO, PrCaMnO и LaSrMnO, полученных методом импульсного лазерного осаждения и содержащих кластеры малых размеров с металлической проводимостью. В соответствии с выводами работы [3], в основе наблюдаемого явления лежат эффекты размерного квантования [4,5]: в случае предельно малых (~ нескольких nm) размеров кластеров последние превращаются в квантовые точки с атомоподобным спектром, а система таких туннельно связанных точек ответственна за эффект $\rho(T) = \text{const}$ при низких температурах.

Для YBaCuO эффект $\rho(T)$ = const наблюдался в аморфных пленках. В данной работе представлены результаты первых экспериментов по созданию подобных кластеров в кристаллических пленках YBaCuO. Предпочтение было отдано слоям YBa₂Cu₃O_{6+x} с тетрагональной структурой при x > 0. В отличие от аморфных пленок YBaCuO,

12

в которых металлические кластеры формируются в неупорядоченной (диэлектрической) среде [1,6], здесь образование подобных кластеров связано с локальной перестройкой кристаллической структуры при изменении содержания кислорода. Очевидно, что кластерообразование можно усилить внешними воздействиями, например коротковолновым лазерным излучением высокой мощности, способным влиять на атомный порядок образцов [7]. Поскольку наибольшей устойчивостью обладают стехиометрические составы с x = 0 и x = 7.0 [8], то при воздействии лазерного излучения на образцы следует ожидать фазовый распад системы на диэлектрическую (матричную) и металлическую (кластерную) составляющие: YBa₂Cu₃O_{6+x} $\Rightarrow (1-C_m)$ YBa₂Cu₃O_{6.0}+ C_m YBa₂Cu₃O_{7- δ}, где C_m — концентрация металлической фазы.

Пленки были получены методом импульсного лазерного осаждения [9] при использовании эксимерного лазера (KrF, $\tau = 25$ ns, $1.5-2.5 \text{ J/cm}^2$, мишени YBa₂Cu₃O_{7- δ}) на подложках LaAlO₃ при $T_s = 780^{\circ}$ С и давлении кислорода ~ 280 mTorr с последующим отжигом в вакууме (0.1–1) mTorr при 500°С в течение 15–30 min. Облучение осуществлялось тем же лазером, но при плотностях энергии $\Phi = 0.1 \text{ J/cm}^2$, что в 3.5–4 раза ниже порога распыления YBaCuO [10].

Типичный спектр оптического пропускания образцов представлен кривой *I* на рис. 1. Не обсуждая особенности спектра в коротковолновой области, следует отметить отсутствие участка, связанного с поглощением свободными носителями заряда при $\hbar \omega < 1.2 \,\text{eV}$, который всегда есть в спектрах сверхпроводящих слоев YBaCuO [9] (кривая 2). Он появляется лишь после лазерного облучения (кривая 3, рис. 1), способствующего фазовому разделению и развитию неоднородностей [7]. Одновременно наблюдаются увеличение прозрачности образцов в исследуемом спектральном интервале и рост их сопротивления (в 10–20 раз при $T = 300 \,\text{K}$).

Совершенствование системы кластеров с металлической проводимостью при лазерном облучении подтверждают рентгеноструктурные исследования. В исходных пленках основные отражения на дифракционных картинах (рис. 2, a) представляют семейства плоскостей (11l), характеризующих диэлектрическое состояние YBaCuO [9], а после облучения наблюдается совершенствование структуры кластеров с металлической проводимостью, формирующихся преимущественно с участием семейства плоскостей типа (00l) (рис. 2, b). Вместо трех отражений от плоскостей (001), ответственных за проводимость и сверхпроводимость

Рис. 1. Спектры оптического пропускания пленок $t = t(\hbar\omega)$ и их производные $1/t \partial t/\partial (\hbar\omega)$: I — образца с тетрагональной структурой и низкой концентрацией кислорода; 2 — эпитаксиальной пленки с орторомбической структурой и $T_{co} = 90.6$ К; 3 — пленки с тетрагональной структурой после лазерного облучения (20 импульсов 0.1 J/cm^2); 4 — пленки с тетрагональной структурой и повышенной концентрацией кислорода. На вставке: модели плотности состояний для основной диэлектрической матрицы пленок (I) и металлических кластеров (M).

Рис. 2. Рентгеновские дифракционные картины пленок.

ВТСП и проявляющихся в виде диффузных максимумов над фоном, в облученном образце присутствуют восемь отражений. Доля объема, занимаемая кластерами с металлической проводимостью (по отражениям (005) и (006)), увеличивается от 1.6 до 2.4%, а средний размер (R) кластеров такого типа возрастает от 8 до 12 nm.

Развитие системы металлических кластеров приводит к разупорядочиванию структуры образцов. Это сопровождается размытием плотности состояний и хорошо заметно по поведению функции $1/t \partial t/\partial (\hbar \omega)$. В соответствии с определением коэффициент оптического пропускания $t = I/I_0 = f(R) \exp(-\alpha d)$, где I_0 и I — интенсивности падающего и прошедшего излучения, f(R) — функция, зависящая от коэффициента отражения R (в простейшем случае f(R) = (1-R)), α — коэффициент поглощения и d — толщина пленки. Считая f(R) мало меняющейся по сравнению с изменением α , для функции $1/t \partial t/\partial(\hbar \omega)$ можно записать:

$$1/t \,\partial t/\partial(\hbar\omega) \cong -d \,\partial \alpha/\partial(\hbar\omega),\tag{1}$$

где коэффициент поглощения α прямо связан с плотностью состояний, участвующих в оптических переходах [11]. На рис. 1 видно, что при облучении амплитуды изменения функции $1/t \partial t/\partial (\hbar \omega)$, характеризующие градиенты в изменении плотности состояний, существенно уменьшаются. Нетрудно показать, что в области поглощения свободными носителями заряда, в классическом приближении, при использовании известных соотношений [1,7,9,11]

$$1/t \,\partial t/\partial (\hbar\omega) \sim K_1 + K_2 dp C_m (\hbar\omega)^{-3},\tag{2}$$

где K_1 и K_2 — постоянные, p — концентрация дырок. Используя это приближение, было найдено, что концентрация металлической фазы C_m в исходной пленке составляет менее 0.5%, увеличиваясь до 1.1% после облучения. Если кластеры являются терхмерными образованиями, то расстояние между квантовыми точками можно определить по формуле [12,13]

$$l = R(C_m^{-1/3} - 1).$$
(3)

Для $C_m = 0.011$ при размерах кластеров R = 8-12 nm расстояние между ними составляет 28–42 nm. Вероятность туннельных переходов между кластерами в этом случае незначительна [14–16], и сопротивления образцов при низких температурах оказались слишком велики для проведения измерений и наблюдения участка $\rho(T) = \text{const}$ (измерения удалось осуществить лишь в диапазоне T > 50 K).

С повышением содержания кислорода средняя электропроводность пленок увеличивается (в наших экспериментах примерно на порядок при T = 300 K), а участки в спектрах пропускания, обусловленные поглощением свободными носителями заряда, наблюдаются уже в исходных

образцах (кривая 4 на рис. 1). Значение $C_m = 3.9\%$ (3.1% по рентгеновским данным), т.е. почти в 4 раза выше, а величина пропускания t ниже практически во всем спектральном интервале по сравнению с менее легированным образцом. В то же время амплитуды изменения $1/t \partial t/\partial (\hbar \omega)$ практически одинаковы (рис. 1). Из особенностей в спектрах следует наличие краевого пика в зоне проводимости (модели плотности состояний приведены на вставке к рис. 1). Минимум при энергии ~ 3.4 eV приходится на псевдощель между зонами Cu3d¹⁰ и Cu4s¹. Дальнейшее увеличение плотности состояний и уменьшение пропускания с ростом $\hbar \omega$ при $\hbar \omega > 3.4$ eV, по-видимому, уже связаны с вкладом состояний Cu4s¹ в оптическое поглощение.

В соответствии с рентгеноструктурными данными средний размер кластеров (00*l*) меньше, чем в предыдущем случае, и составляет около 6 nm (при росте их количества в несколько раз). Кроме этого, вместо трех типов плоскостей семейства (00*l*) их число увеличивается до 5 (рис. 2, *c*). Для $C_m = 3.9\%$ l = 11-12 nm при R = 6 nm. Экспоненциальный рост вероятности туннельных переходов с уменьшением *l* приводит к снижению сопротивления при низких температурах, что позволяет наблюдать участок $\rho(T) \cong$ const при T < 20 K (рис. 3).

Теории рассматриваемого эффекта пока нет, однако в соответствии с данными, приведенными на рис. 3, можно предполагать, что величина $T_{\rm crit}$ связана с переходом кластеров с квазинепрерывным спектром в квантовые точки. При $T < T_{\rm crit}$ (как видно на рис. 3, $T_{\rm crit} = 20 \,\rm K$) сопротивление образцов определяется туннелированием носителей заряда по системе квантовых точек, а $\rho(T) \cong {\rm const.}$ Приравнивая к $T_{\rm crit} = 1.7 \cdot 10^{-3} \,\rm eV}$ и расстояние между уровнями размерного квантования Δ , можно оценить размер кластеров R:

$$KT_{\text{crit}} \cong \Delta = \left[R^3 N(E_F) \right]^{-1} \cong \left[R^3 p / E_F \right]^{-1}, \tag{4}$$

где E_F — энергия Ферми и p — концентрация дырок. Откуда для $p = 1 \cdot 10^{22} \,\mathrm{cm}^{-3}$ находим $R = 4 \,\mathrm{nm}$, что несколько выше среднего размера кластеров в аморфных пленках YBaCuO [1], в которых $T_{\rm crit} = 160-240 \,\mathrm{K}$. Однако, поскольку ширина слоя пространственного заряда у поверхности кластеров (слой, обедненный свободными дырками) $w \sim (1/p)^{1/2}$ составляет около 1 nm [1], то полученное значение Rследует увеличить до 6 nm, что соответствует данным рентгеноструктурных исследований. Из примерно двух десятков свободных дырок 2/3 их

Рис. 3. Температурная зависимость удельного сопротивления пленки с повышенной концентрацией кислорода. На вставке: зонная энергетическая диаграмма диэлектрической пленки $YBa_2Cu_3O_{6+x}$ с металлическими кластерами. E_C — край зоны проводимости, E_V — край валентной зоны; M — кластеры с металлической (дырочного типа) проводимостью.

приходится на обедненный слой. В связи с этим уменьшение размера кластеров до 3–4 nm, характерного для аморфных пленок [1,7], может иметь катастрофическое влияние на концентрацию свободных дырок в кластерах, объясняя тем самым большую разницу по $T_{\rm crit}$ между этими двумя типами образцов. Малые размеры кластеров в аморфных слоях, сопоставимые с удвоенным значением w, приводят к значительному уменьшению концентрации дырок в приповерхностных слоях кластеров и влиянию квантово-размерных эффектов на оптические спектры образцов уже при комнатной температуре [1].

Несмотря на выполнение приблизительного равенства $\rho(T) \cong \text{const}$, из приведенного рис. З видно, что, в отличие от аморфных пленок, слабая зависимость ρ от T остается здесь и при низких температурах. Это отчетливо проявляется на кривой LT — на зависимости ρ от Tпри $T < 30 \, \text{K}$, показанной в более подробном масштабе. В диапазоне температур от 300 до 20 K значения локальной энергии активации $\delta \varepsilon$, определяемой общепринятым образом как $\delta \varepsilon = \partial \ln n\rho / \partial (kT^{-1})$ [17], изменяются от 0.35 до $4 \cdot 10^{-4}$ eV, приобретая в интервале 4.2 K < T < 13 Kнеобычайно низкое и весьма странное значение $\delta \varepsilon = 9.6 \cdot 10^{-5}$ eV, что в 4 раза ниже значения kT при 4.2 K и в 12 раз — при 13 K. Наиболее вероятной причиной этого мы считаем наличие "хвостов" от механизмов электропроводности, связанных с термической активацией, действие которых при низких температурах шунтируется проводимостью по системе туннельно связанных квантовых точек. Следует отметить, что $\delta \varepsilon = 9.6 \cdot 10^{-5} \, \mathrm{eV}$ соответствует энергии электромагнитного кванта $\hbar \omega$ в СВЧ-области (сантиметровый диапазон, длина волны $\lambda = 1.3$ cm), что открывает новые возможности для исследования природы изучаемого явления.

Данная работа была частично поддержана грантом *ї* PBZ–KBN– 013/T08/19 правительства Польши.

Список литературы

- Okunev V.D., Samoilenko Z.A., Svistunov V.M. et al. // J. Appl. Phys. 1999.
 V. 85. N 10. P. 7282–7290.
- [2] Прохоров В.Г., Каминский Г.Г., Флис В.С., Янг Пак Ли // ФНТ. 1999. Т. 25.
 В. 10. С. 1060–1066.
- [3] Окунев В.Д., Пафомов Н.Н., Абалешев А. и др. // Письма в ЖТФ. 2000. Т. 26. В. 20. С. 20–27.
- [4] Алферов Ж.И. // ФТП. 1998. Т. 32. В. 1. С. 3-18.
- [5] Леденцов Н.Н., Устинов В.М., Щукин В.А. и др. // ФТП. 1998. Т. 32. В. 4. С. 385–410.
- [6] Смирнов Б.М. // УФН. 2000. Т. 170. В. 5. С. 495-534.
- [7] Okunev V.D., Samoilenko Z.A., Abal'oshev A. et al. // Phys. Rev. B. 2000. V. 62.
 P. 696–701.
- [8] Швейкин Г.П., Губанов В.А., Фотиев А.А., Базуев Г.В., Евдокимов А.А. Электронная структура и физико-химические свойства высокотемпературных сверхпроводников. М.: Наука, 1990. 239 с.
- 2* Письма в ЖТФ, 2002, том 28, вып. 2

- [9] Okunev V.D., Samoilenko Z.A., Abal'oshev A. et al. // Appl. Phys. Lett. 1999.
 V. 75. N 13. P. 1949–1951.
- [10] Singh R.K., Narayan J. // Phys. Rev. B. 1990. V. 41. N 13. P. 8843-8859.
- [11] Смит Р. Полупроводники.
- [12] Okunev V.D., Pafomov N.N., Svistunov V.M. et al. // Physica. C. 1996. V. 262.
 N 1&2. P. 75–80.
- [13] Окунев В.Д., Дьяченко Т.А. // ФНТ. 1996. Т. 22. № 11. С. 1252–1256.
- [14] Xu Y, Matsuda A, Beasley M.R. // Phys. Rev. B. 1990. V. 42. N 2. P. 1492–1495.
- [15] Xu Y., Ephron D., Beasley M.R. // Phys. Rev. B. 1995. V. 52. N 4. P. 2843–2859.
- [16] Yoshida J., Nagano T., Hashimoto T. // J. Low Temp. Phys. 1997. V. 106. N 3/4. P. 327–332.
- [17] Окунев В.Д., Пафомов Н.Н. // ЖЭТФ. 1999. Т. 116. В. 1. С. 276–298.