03;10;12 Конверсия оксидов серы и азота в воздухе под действием микросекундных пучков электронов

© Г.В. Денисов, Д.Л. Кузнецов, Ю.Н. Новоселов, Р.М. Ткаченко

Институт электрофизики УрО РАН, 620016 Екатеринбург, Россия e-mail: nov@iep.uran.ru

(Поступило в Редакцию 19 июля 2001 г.)

Приведены результаты экспериментальных исследований конверсии оксидов серы и азота в ионизованной газовой смеси, моделирующей состав отходящих газов тепловых электростанций. В качестве источника ионизации использовался импульсный пучок электронов микросекундной длительности. Показано взаимное влияние обоих сортов оксидов на процесс их конверсии. Рассмотрены возможные кинетические механизмы удаления оксидов серы и азота из газовой смеси.

Введение

Одним из основных источников загрязнения окружающей среды являются дымовые газы тепловых электростанций, выносящие в атмосферу оксиды серы и азота в больших количествах. Эти соединения, взаимодействуя с парами воды и накапливаясь в атмосфере, являются причиной образования кислотных дождей. Для снижения вредного воздействия на окружающую среду диоксида серы SO_2 и оксидов азота NO_x необходима очистка дымовых газов непосредственно в месте их попадания в атмосферу, т.е. на тепловых электростанциях. Существует несколько подходов к решению этой проблемы, одним из которых является обработка дымовых газов электронными пучками.

Для этой цели обычно используются ускорители электронов непрерывного действия, генерирующие пучки с невысокой плотностью тока $\sim 10^{-5} - 10^{-9} \, \text{A/cm}^2$ (см., например, обзор [1] и сборник [2]). Удаление токсичных примесей в этом случае происходит в несколько этапов [3]. Вначале при воздействии быстрых электронов пучка на дымовые газы, содержащие кроме удаляемых оксидов пары воды, происходит генерация свободных радикалов О, ОН, О₂Н и др. Затем в результате протекания химических реакций с участием таких радикалов происходит окисление SO₂ и NO₂ до соответствующих кислот — H₂SO₄ и HNO₃. На следующем этапе кислоты взаимодействуют со специально добавляемым в дымовой газ аммиаком и образуют сульфаты и нитраты аммония в виде твердого порошка. На заключительном этапе очистки происходит улавливание этих порошков различного рода фильтрами.

Теория первых двух этапов развита до уровня хорошего совпадения с экспериментальными результатами [4,5]. Дальнейшее развитие теоретических представлений о свободно-радикальном механизме окисления примесей при электронно-лучевой очистке дымовых газов связано с исследованием гетерофазных процессов и образования аэрозолей [6,7].

Использование электронных пучков позволяет добиться высокой степени очистки — до 95% для SO₂ и до 80% для NO_x [1–3]. При этом затраты энергии на удаление одной молекулы составляют от 12 до 30 и более электрон-вольт на одну молекулу (eV/mol). Эти значения приводят к необходимости потребления мощности на очистку газа, которая составляет до 3-5% установленной мощности тепловых электростанций. Снижение затрат энергии является основной задачей при создании электронно-лучевой технологии очистки.

Ранее на примере диоксида серы было показано [8,9], что применение импульсных пучков электронов позволяет значительно, в несколько раз, снизить затраты энергии на удаление одной токсичной молекулы. Это стало возможно, потому что использование таких пучков с оптимальными параметрами позволяет реализовать цепной плазмохимический механизм конверсии SO₂. Снижение затрат энергии и при удалении оксидов азота NO_x импульсными пучками зарегистрировано в [10,11]. Однако в этих работах исследовалось удаление либо только диоксида серы SO₂, либо только оксидов азота NO_x. В настоящей работе с использованием импульсных электронных пучков экспериментально исследовано взаимное влияние оксидов SO₂ и NO_x на их конверсию.

Техника и методика эксперимента

Эксперименты выполнялись на установке, созданной на основе импульсного ускорителя электронов с плазменным катодом, конструкция которого аналогична описанной в [12]. Электронный пучок, формируемый ускорителем, имел сечение $10 \times 100 \text{ cm}^2$, энергию 200 keV, длительность импульса на полувысоте $\tau \sim 5 \cdot 10^{-6} \text{ s}$ и плотность тока пучка *j* от 4.5 до $12.5 \cdot 10^{-3} \text{ A/cm}^2$. Через титановую фольгу толщиной $20 \mu \text{m}$ пучок инжектировался в газовую камеру объемом 12l. Энергия пучка, поглощенная в газе, определялась как $W = j\tau D$, где D — доза поглощенной газом энергии на единицу длины. Произведение $j\tau$ определялось интегрированием осциллограмм тока и напряжения, величина D измерялась с помощью пленочных детекторов типа ЦДП-Ф-2 по стандартной методике [13]. Модельная газовая смесь готовилась в специальном смесителе, затем она напускалась в предварительно вакуумированную и дважды промытую чистым азотом плазмохимическую камеру. В камере исследуемая смесь принудительно прокачивалась по замкнутому контуру в течение всего времени эксперимента. Опыты по конверсии оксидов азота и серы проводились в модельной смеси, содержащей азота около 90%, кислорода — 10% и примесных оксидов SO₂ и NO_x с концентрацией от 0 до 5000 ppm.

Контроль качественного и количественного состава газовой смеси проводился хроматографическим и электрохимическим методами с использованием газового хроматографа "Цвет 500М" и анализатора дымовых газов "Testo-350". Хроматограф применялся для измерения концентраций кислорода и азота, прибором "Testo-350" измерялись концентрации примесей SO₂ и NO_x. Для определения концентраций NO и NO₂, сумма которых составляет величину примеси NO_r, использовался кондуктометрический метод с криогенным отделением NO от NO₂ [14]. В первом случае при криогенном отделении NO от NO2 определялась концентрация монооксида азота [NO], а во втором — без разделения, общая концентрация оксидов азота $[NO_x] = [NO] + [NO_2]$. Содержание оксидов азота находилось из калибровочного графика зависимости концентрации [NO] от проводимости поглотительного раствора, которая была определена в отдельном эксперименте на стандартных газовых смесях NO + N₂ для интервала концентраций NO от 200 до 5500 ррт. Среднестатистическая погрешность измерений не превышала 0.03. Используемая методика не позволяла в ходе эксперимента осуществлять одновременный контроль концентраций обоих сортов примеси — оксидов серы и азота. Поэтому в опытах контролировался начальный состав смеси, а в процессе эксперимента — концентрация только одного сорта примеси: либо диоксида серы, либо оксидов азота.

Облучение исследуемой газовой смеси осуществлялось в одиночном режиме следования импульсов. В каждом опыте производилось 300-500 импульсов, при этом содержание оксидов азота и серы контролировалось через каждые 50 импульсов. При проведении экспериментов определялись как абсолютное изменение концентрации оксидов серы или азота, так и степень конверсии, а также затраты энергии на удаление одной молекулы примеси. Степень конверсии η и затраты энергии ε вычислялись отдельно для каждого сорта оксидов как

$$\eta = \Delta[C]/[C]_0, \quad \varepsilon = WN/e\Delta[C] \, (\text{eV/mol}).$$

Здесь $\Delta[C]$ — изменение концентрации оксидов SO₂ или NO_x за серию импульсов облучения (cm⁻³), $[C]_0$ начальная концентрация примеси в исследуемой смеси (cm⁻³), W — поглощенная в газе энергия пучка за один импульс (J/cm³), N — количество импульсов в серии облучения, *e* — заряд электрона (Coul). Общая погрешность измерений величины ε с учетом погрешности определения поглощенной энергии W не превышала 0.3.

Конверсия диоксидов серы

Ранее [9] было показано, что в дымовых газах, содержащих в качестве примеси только диоксид серы, при облучении пучками электронов микросекундной длительности реализуется цепной механизм конверсии SO₂. Инициирование цепи осуществляется реакцией трехчастичного прилипания термализованных электронов пучка и деградационного каскада к молекулам кислорода с образованием отрицательных ионов O₂⁻

$$e + O_2 + M \Longrightarrow O_2^- + M,$$
 (1)

где *М* — третья частица, которой могут быть молекулы азота, кислорода или воды.

Гибель активных ионов O_2^- происходит в реакциях продолжения цепи и в конкурирующих с ними реакциях рекомбинации с положительными ионами азота N_2^+ . Реакциями цепного окисления являются следующие [15]:

$$O_2^- + SO_2 \Longrightarrow SO_2^- + O_2, \tag{2}$$

$$SO_2^- + O_2^* \Longrightarrow SO_4^-,$$
 (3)

$$SO_4^- + O_2^* \Longrightarrow SO_3 + O_3^-,$$
 (4)

$$SO_2 + O_3^- \Longrightarrow SO_3^- + O_2,$$
 (5)

$$SO_3^- + H_2O \Longrightarrow H_2SO_4 + e.$$
 (6)

Освободившийся в реакции (6) электрон может участвовать в реакции (1), замкнув тем самым цепь реакций. Кроме того, в механизме (1)–(6) активно участвуют отрицательные ионы озона, которые могут образовываться в реакциях

$$e + \mathcal{O}_2 \Longrightarrow \mathcal{O} + \mathcal{O},\tag{7}$$

$$O_2^- + O + M \Longrightarrow O_3^- + M$$
 (8)

и других с участием атомарного кислорода и ионов O_{2}^{-} [16].

Характерное время конкурирующей с (2) и (8) реакции рекомбинации с участием ионов азота и кислорода

$$O_2^- + N_2^+ \Longrightarrow O_2 + N_2 \tag{9}$$

составляет при атмосферном давлении, невысокой влажности и параметрах пучка, используемого в наших опытах, $\sim 10-20\,\mu s~[17]$. Поэтому при больших временах убыль ионов O_2^- в реакции (9) резко возрастает, что приводит к непродуктивным потерям O_2^- и снижает вероятность возникновения цепного механизма. Таким образом, применение импульсного электронного пучка с оптимальной плотностью тока $j \sim 10^{-3}$ A/cm² и длительностью импульса $\tau \sim 10\,\mu s$ позволяет реализовать цепной механизм окисления SO₂ с малыми $\sim 1 \, eV/mol$ затратами энергии [9].

Полученные в наших опытах зависимости изменения концентрации диоксида серы от количества импульсов N облучения смеси при различной начальной концентрации NO₂ показаны на рис. 1. Состав модельной смеси был следующим: N₂ ~ 88.5%, O₂ ~ 10%, H₂O ~ 1%,

Рис. 1. Зависимость изменения концентрации диоксида серы SO_2 от количества импульсов облучения *N*. Концентрация примеси NO_2 , ppm: 1 - 0, 2 - 1000, 3 - 500.

 $NO \sim (0 \div 0.1)$ %. Начальная концентрация SO₂ соответствует величине на оси ординат при N = 0. Видно, что снижение концентрации SO₂ зависит от содержания в исследуемой смеси оксида азота и происходит наиболее интенсивно при отсутствии примеси NO₂ (кривая 1). В этом случае реализована степень конверсии $\eta \sim 98$ %, а затраты энергии ε составили при этом $\sim 4 \text{ eV/mol}$. Вероятно, в этом режиме реализуется цепной механизм окисления SO₂. Затраты энергии несколько выше, чем в [9], в связи с тем, что используемый в описываемых опытах электронный пучок не обладал оптимальными параметрами.

Добавление в газовую смесь небольших количеств оксидов азота $[NO_2] \sim 500$ ppm ухудшали эффективность удаления SO₂ (рис. 1 кривая 3): степень конверсии η снижалась при этом до 60%. Дальнейшее увеличение концентрации оксидов азота $[NO_2] \sim 1000$ ppm приводило к некоторому улучшению процесса — степень конверсии повышалась до ~ 65%.

Энергетической характеристикой процесса удаления диоксида серы являются затраты энергии ε на удаление одной молекулы SO₂. На рис. 2 приведены зависимости величины ε (1), а также зависимость степени конверсии η (2) от начальной концентрации NO₂ в исследуемой смеси. Количество импульсов облучения было равно 300 для каждой точки. Видно, что увеличение начальной концентрации NO₂ вызывает снижение степени конверсии диоксида серы и увеличение затрат энергии на удаление одной молекулы SO₂. При дальнейшем увеличении концентрации NO₂ затраты энергии несколько снижались.

Рассмотрим вероятные причины, которые могут вызвать такое поведение характеристик процесса конверсии SO_2 при добавках оксидов азота. Присутствие в газовой смеси, содержащей диоксид серы, молекул NO_2 может вызвать инициирование конкурирующих процессов, приводящих к снижению концентрации как отрицательных ионов кислорода O_2^- и озона O_3^- , так и

ионов SO_2^- , т. е. ионов, участвующих в цепном механизме. Одним из таких процессов может быть прилипание термализованных электронов пучка к электроотрицательной молекуле NO_2 , обладающей энергией сродства к электрону, равной 2.42 eV,

$$e + \mathrm{NO}_2 \Longrightarrow \mathrm{NO}_2^-.$$
 (10)

Другим процессом является конкурирующая с (2) реакция перезарядки

$$O_2^- + NO_2 \Longrightarrow O_2^* + NO_2^-, \tag{11}$$

константа скорости которой заметно выше, чем реакции (2). Для реакции (2) ее значение составляет $k_2 \sim 4.5 \cdot 10^{-10}$ cm³/s, а для реакции (11) $k_{11} \sim 12 \cdot 10^{-10}$ cm³/s [18]. Потеря отрицательных ионов SO₂⁻ в реакции перезарядки

$$SO_2^- + NO_2 \Longrightarrow SO_2 + NO_2^-$$
 (12)

может существенно снизить вероятность возникновения цепного механизма. Эта реакция протекает достаточно интенсивно в смесях с высоким содержанием примесных оксидов, ее константа скорости равна $k_{12} \sim 4.3 \cdot 10^{-10} \,\mathrm{cm}^3/\mathrm{s}$ [18].

Оценки влияния примеси оксидов азота были проведены для смеси, содержащей $[SO_2] = 700$ ppm, и при изменении $[NO_2]$ до 500 ppm, для электронного пучка с плотностью тока $5 \cdot 10^{-3}$ A/cm² и длительностью прямоугольного импульса $5 \cdot 10^{-6}$ s, при этом учитывались реакции (2), (10)–(12). Упрощенный анализ показывает, что концентрация свободных электронов в ионизованной смеси устанавливается на квазистационарном уровне за характерное время $\sim 10^{-7}$ s и составляет $\sim 10^{-11}$ cm⁻³. Она практически не изменяется с добавлением примеси оксидов азота. Для условий наших экспериментов оценки показывают, что образование отрицательных ионов в

Рис. 2. Затраты энергии (1) и степени конверсии (2) при удалении диоксида серы в зависимости от начальной концентрации NO₂. Начальная концентрация SO₂ 3600 ppm.

Рис. 3. Результаты упрощенного расчета: зависимости концентрации ионов $O_2^-(a)$ и $SO_2^-(b)$ от времени в отсутствии (1) и при наличии (2) примеси NO_2 .

реакции (1) происходит более чем в 40 раз интенсивнее, чем в реакции (10). Таким образом, убыль электронов за счет прилипания в реакции (10) не может существенным образом влиять на инициирование цепного механизма окисления SO_2 .

На рис. 3, *а* приведены расчетные зависимости концентрации отрицательных ионов кислорода от времени. Видно, что наличие оксидов азота снижает концентрацию O_2^- незначительно, т.е. конкуренция реакций перезарядки (2) и (11) не сказывается существенным образом на снижении эффективности цепного механизма (2)–(6).

Наиболее существенное влияние на снижение эффективности удаления SO₂ при наличии в смеси оксидов азота оказывает реакция перезарядки отрицательных ионов SO₂⁻ (12). Упрощенные расчеты, выполненные для условий экспериментов, показывают, что добавление в газовую смесь 500 ppm оксидов азота NO₂ приводит к значительному снижению концентрации отрицательных ионов SO₂⁻ (рис. 3, *b*). Соответственно снижается вероятность осуществления цепного механизма окисления SO₂, что вызывает уменьшение степени конверсии и повышение затрат энергии на удаление одной молекулы диоксидов серы (рис. 2).

Однако наличие в смеси достаточно большого количества оксидов азота интенсифицирует механизм химической конверсии SO₂. Это возможно при протекании реакций окисления диоксида серы под действием NO₂ [19,20] с последующим образованием серной кислоты в реакции с молекулой воды

$$SO_2 + NO_2 \Longrightarrow NO + SO_3,$$
 (13)

$$SO_3 + H_2O \Longrightarrow H_2SO_4.$$
 (14)

Количественные оценки для условий нашего эксперимента (например, для кривой 2 на рис. 1 при количестве импульсов облучения N = 300) показывают, что при использовании константы скорости реакции (13) $k_{13} = 4.1 \cdot 10^{-21} \text{ cm}^3/\text{s}$ [20] количество конвертировавших по (13), (14) молекул SO₂ составляет $\sim 10^{16} \text{ cm}^{-3}$. В эксперименте (кривая 2 на рис. 1) наблюдается $\Delta[\text{SO}_2] \sim 6 \cdot 10^{16} \text{ cm}^{-3}$. Качественное совпадение этих

величин свидетельствует о том, что механизм реакций (13), (14) действительно может приводить к увеличению степени очистки и снижению затрат энергии.

Конверсия оксидов азота

Механизм удаления оксидов азота при воздействии электронного пучка на газ связан в основном с протеканием реакций газофазного окисления NO_x по свободнорадикальному механизму [1,2]. Как уже упоминалось во Введении, под воздействием быстрых электронов пучка в газе образуются свободные атомы и радикалы, которые затем взаимодействуют с молекулами NO_2 ,

$$NO_2 + N \Longrightarrow 2 NO,$$
 (15)

$$NO_2 + N \Longrightarrow N_2 + 2O,$$
 (16)

$$NO_2 + N \Longrightarrow N_2 + O_2,$$
 (17)

$$NO_2 + O \Longrightarrow NO + 2O,$$
 (18)

$$O + NO_2 \Longrightarrow O_2 + NO,$$
 (19)

$$NO_2 + OH \Longrightarrow HNO_3.$$
 (20)

Примесь монооксида азота достаточно быстро окисляется до диоксида в реакции

$$2 \operatorname{NO} + \operatorname{O}_2 \Longrightarrow 2 \operatorname{NO}_2.$$
 (21)

В [21] было показано, что в дымовом газе с малым содержанием кислорода конверсия NO₂ эффективно может протекать без образования кислоты как конечного продукта, а именно при взаимодействии атомарного азота с оксидами NO_x в реакциях (15)–(17) с образованием атомарных и молекулярных азота и кислорода (16), (17), (19).

Снижение концентрации NO_r при воздействии на смесь $N_2: O_2: H_2O \sim 89: 10:1$ импульсного пучка показано на рис. 4. Начальная концентрация NO_x составляла в этих опытах величину 260-295 ррт. Видно, что с увеличением количества импульсов облучения концентрация оксидов азота снижается, наибольшее снижение концентрации NO_x наблюдается в отсутствие примеси диоксидов серы (кривая 4). Добавки небольшого количества SO₂ ~ 100-200 ppm приводят к заметному замедлению процесса удаления оксидов азота. На рис. 4, b представлены зависимости изменения концентраций оксидов азота NO_x, NO и NO₂, а также диоксида серы от количества импульсов облучения в смеси, содержащей 150 ppm SO₂. Поведение зависимостей концентрации NO и NO₂, а также $NO_x = NO + NO_2$ аналогично подобным зависимостям в отсутствие примесей SO_2 [10]. Концентрация диоксида серы SO₂ плавно снижается, что также качественно соответствует ранее полученным результатам [9].

На рис. 5 приведены зависимости величины ε (1) и степени конверсии η (2) от начальной концентрации SO₂ в исследуемой смеси. Количество импульсов облучения

Рис. 4. Зависимости концентрации примесей от количества импульсов облучения. a — монооксид азота NO при содержании [SO]₂, ppm: I — 100, 2 — 300, 3 — 500, 4 — 0; b — оксиды азота NO_x (I), NO (2), NO₂ (3) и оксиды серы SO₂ (4).

Рис. 5. Затраты энергии (1) и степени очистки (2) при удалении оксидов азота NO_x в зависимости от начальной концентрации SO_2 . Начальная концентрация NO_x 280 ppm.

было равно 300 для каждой точки. Видно, что наличие примеси SO₂ вызывает увеличение затрат энергии на удаление одной молекулы NO₂. Снижение степени конверсии η наблюдается при увеличении содержания SO₂ до ~ 100–300 ppm, при дальнейшем увеличении концентрации примеси параметр η изменяется слабо. Эти опыты проводились в смеси содержащей малое количество паров воды, недостаточное для образования аэрозолей и протекания реакций гетерофазного окисления NO_x [6,7]. При образовании в смеси аэрозолей, как отмечается в [22], за счет реакций в жидкой фазе добавление диоксида серы приводит к росту степени конверсии NO_x с одновременным удалением SO₂.

Маловероятно, что в наших опытах причиной ухудшения характеристик конверсии примеси NO₂ при наличии диоксида серы являются процессы прилипания термализованных электронов к молекуле SO₂. Оценки, выполненные для этого случая, аналогично полученным ранее показывают лишь небольшое изменение концентрации электронов. Более того, энергия термализованных электронов, эффективно участвующих в реакцииях прилипания (10), (22), недостаточна для диссоциации молекул исследуемой газовой смеси и наработки заметного количества свободных радикалов. Таким образом, убыль электронов в реакциях (10), (22) несущественна для процесса конверсии NO₂.

Рассмотренные ранее ионно-молекулярные реакции с участием ионов примесных оксидов также не могут влиять на процесс удаления NO₂, поскольку механизм конверсии оксидов азота по реакциям (15)–(21) не связан с заряженными частицами. Упрощенный анализ, выполненный нами на основе приближенного решения основных кинетических уравнений, не позволяет установить кинетический механизм, ответственный за изменения степени конверсии, наблюдаемые в наших экспериментах. Для выяснения этого механизма необходимы дополнительные целенаправленные эксперименты, в которых можно проследить изменение концентраций активных частиц как во время действия импульса облучения, так и после его окончания в широком временно́м диапазоне.

Заключение

Проведены исследования конверсии оксидов серы и азота в модельной газовой смеси, облучаемой импульсными электронными пучками. Полученные в работе экспериментальные результаты показывают, что наличие в дымовом газе обоих видов оксидов снижает эффективность их конверсии по сравнению со случаем, когда в газе присутствует только один из них.

В отсутствии оксидов азота NO_x в ионизованной импульсным электронным пучком смеси реализуется цепной механизм удаления диоксидов серы SO_2 , связанный с образованием отрицательных ионов диоксида. Наличие в газовой смеси оксидов азота приводит к развитию конкурирующей реакции перезарядки, которая уменьшает вероятность участия отрицательных ионов $SO_2^$ в цепном процессе. При этом степень очистки смеси от SO_2 снижается. При дальшейшем увеличении содержания NO_x в смеси выше 1000 ppm цепной механизм конверсии диоксидов серы перестает работать и их удаление происходит в реакциях окисления SO_2 свободными радикалами и молекулами NO_2 , что приводит к некоторому возрастанию степени очистки.

Влияние примеси SO_2 на процесс конверсии оксидов азота NO_x при воздействии импульсных электронных пучков внешне выглядит аналогично: наличие малых концентраций диоксида серы снижает степень конверсии NO_x , тогда как повышение концентрации SO_2 выше определенной приводит к некоторому ее возрастанию. Однако кинетический механизм этого эффекта остается неясным, что стимулирует дальнейшие исследования.

Работа выполнялась при частичной поддержке Международного научно-технического центра (проект № 271).

Список литературы

- [1] Валуев А.А., Каклюгин А.С., Норман Г.Э. и др. // ТВТ. 1990. Т. 28. Вып. 5. С. 995–1008.
- [2] Non-thermal Plasma Techniques for Pollution Control / Ed. B.M. Penetrante, S.E. Schultheis. NATO ASI Series. Vol. G34. Heidelberg: Springer Verlag. Berlin, 1993. Pt A, 398 p. Pt B. 397 p.
- [3] Jordan S. // Rad. Phys. Chem. 1988. Vol. 34. N 1-3. P. 21-28.
- [4] Matzing H. // Non-thermal Plasma Techniques for Pollution Control / Ed. B.M. Penetrante, S.E. Schultheis. NATO ASI Series. Vol. G34. Heidelberg; Berlin: Springer Verlag, 1993. Pt A. P. 59–64.
- [5] Герасимов Г.Я., Герасимова Т.С., Макаров В.Н., Фадеев С.А. // ХВЭ. 1996. Т. 30. № 1. С. 34–38.
- [6] Potapkin B.V., Deminsky M.A., Fridman A.A., Rusanov V.D. // Rad. Phys. Chem. 1995. Vol. 45. N 6. P. 1081–1088.
- [7] Герасимов Г.Я., Герасимова Т.С., Фадеев С.А. // ХВЭ. 1996. Т. 30. № 6. С. 410–413.
- [8] Kuznetsov D.L., Mesyats G.A., Novoselov Yu.N. // Noval Applications of Lasers and Pulsed Power / Ed. R.D. Curry. SPIE 2374. 1995. P. 142–145.
- [9] Кузнецов Д.Л., Месяц Г.А., Новоселов Ю.Н. // ТВТ. 1996.
 Т. 34. № 6. С. 845–852.
- [10] Денисов Г.В., Новоселов Ю.Н., Ткаченко Р.М. // Письма в ЖТФ. 1998. Т. 24. Вып. 4. С. 52–56.
- [11] Nakagawa Y., Kawauchi H. // Jap. J. Appl. Phys. 1998. Vol. 37. P. 91–94.
- [12] Гарусов К.А., Кузнецов Д.Л., Новоселов Ю.Н., Уварин В.В. // ПТЭ. 1992. Вып. 3. С. 180–184.
- [13] Генералова В.В., Гурский М.Н. Дозиметрия в радиационной технологии. М.: Изд-во стандартов, 1981. 132 с.
- [14] Худякова Е.А., Крешков А.П. Теория и практика кондуктометрического анализа. М.: Химия, 1976. 304 с.
- [15] Баранчиков Е.И., Беленький Г.С., Денисенко В.П. и др. // ДАН СССР. 1990. Т. 315. № 1. С. 120–124.
- [16] Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. М.: Изд-во МГУ, 1998. 480 с.
- [17] Смирнов Б.М. Отрицательные ионы. М.: Атомиздат, 1978. 176 с.
- [18] Вирин Л.И., Джагацпанян Р.В., Карачевцев Г.В. и др. Ионно-молекулярные реакции в газах. М.: Наука, 1979. 547 с.
- [19] Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М.: Наука, 1974. 558 с.
- [20] Кондратьев В.Н. Константы скорости газофазных реакций. М.: Наука, 1970. 351 с.
- [21] Денисов Г.В., Новоселов Ю.Н., Ткаченко Р.М. // Письма в ЖТФ. 2000. Т. 26. Вып. 16. С. 30–34.
- [22] Деминский М.А., Ермаков А.Н., Поскребышев Г.А. и др. // ХВЭ. 1999. Т. 33. Вып. 1. С. 44-48.