01;03 Нелинейные осцилляции заряженной капли при начальном возбуждении соседних мод

© С.О. Ширяева

Ярославский государственный университет им. П.Г. Демидова, 150000 Ярославль, Россия e-mail: shir@uniyar.ao.ru

(Поступило в Редакцию 31 мая 2001 г.)

Проведен асимптотический аналитический анализ нелинейных колебаний заряженной капли при многомодовой начальной деформации ее равновесной сферической формы. Показано, что когда в спектре мод, определяющих начальную деформацию, присутствуют две, три или несколько соседних мод, то в спектре мод, возбуждающихся во втором порядке малости, проявляется мода с номером "один", или трансляционная мода. Это является следствием требования неподвижности центра масс капли. Возбуждение трансляционной моды приводит к появлению в спектре акустического и электромагнитного излучения заряженной капли дипольных компонент, не обнаруживаемых в линейном анализе.

1. Исследование капиллярных колебаний и устойчивости заряженной капли представляет значительный интерес в связи с разнообразием академических, технически и технологических приложений, в которых заряженная капля играет важную роль (см., например, [1-3] и указанную там литературу). В связи с повышенным вниманием к заряженной капле как физическому объекту большая часть связанных с ней задач, сформулированных в рамках линейных моделей, уже решена и в последние годы появилось много работ, посвященных нелинейному анализу [4-13], позволяющему получать существенно больше информации об объекте. В связи с громоздкостью вычислительной процедуры аналитических расчетов в нелинейных задачах многие аспекты нелинейных колебаний заряженной капли остаются пока нерассмотренными или непонятыми. Последнее относится к так называемой трансляционной неустойчивости капель и пузырей, проявляющейся, когда в спектре начально возбужденных мод имеются две соседние [14]. Согласно [14], центр масс трансляционно неустойчивой капли приобретает в результате реализации нелинейных колебаний скорость поступательного движения. Такое утверждение представляется неверным, поскольку противоречит известному положению теоретической механики: никакими движениями внутри замкнутой системы невозможно привести в движение ее центр масс. В связи со сказанным представляет интерес задача о расчете нелинейных капиллярных осцилляций заряженной капли, когда в начальный момент времени задается деформация равновесной сферической формы капли, связанная с возбуждением соседних мод.

2. Рассмотрим эволюцию во времени формы поверхности капли идеальной, несжимаемой, идеально проводящей жидкости с плотностью ρ , коэффициентом поверхностного натяжения σ . Примем, что капля находится в вакууме, ее полный заряд равен Q, а объем определяется объемом сферы с радиусом R. В начальный момент времени t = 0 равновесная сферическая форма капли претерпевает виртуальное осесимметричное возмущение фиксированной амплитуды, существенно меньшей радиуса капли. Зададимся целью найти спектр возникающих капиллярных осцилляций капли (форму капли) в последующие моменты времени t > 0.

Поскольку начальное возмущение поверхности капли осесимметрично и мало́, примем, что форма капли осесимметрична как в начальный, так и во все последующие моменты времени, а уравнение, описывающее се поверхность, в полярной системе координат с началом в центре масс капли в безразмерных переменных, в которых $R = \rho = \sigma = 1$, имеет вид

$$r(\Theta, t) = 1 + \xi(\Theta, t), \quad |\xi| \ll 1. \tag{1}$$

Движение жидкости в капле будем полагать потенциальным и примем, что поле скоростей движения жидкости в капле $V(\mathbf{r}, t) = \nabla \psi(\mathbf{r}, t)$ полностью определяется функцией потенциала скорости $\psi(\mathbf{r}, t)$.

Система уравнений, описывающих эволюцию капли, состоит из уравнений Лапласа для потенциала поля скоростей $\psi(\mathbf{r}, t)$, электростатического потенциала $\Phi(\mathbf{r}, t)$

$$\Delta \psi(\mathbf{r}, t) = 0, \tag{2}$$

$$\Delta\Phi(\mathbf{r},t) = 0 \tag{3}$$

и граничных условий

$$\psi \to 0: \quad \psi(\mathbf{r}, t) \to 0,$$
 (4)

$$r \to \infty: \quad \Phi(\mathbf{r}, t) \to 0,$$
 (5)

$$r = 1 + \xi(\Theta, t): \quad \frac{\partial \xi}{\partial t} = \frac{\partial \psi}{\partial r} - \frac{1}{r^2} \frac{\partial \xi}{\partial \Theta} \frac{\partial \psi}{\partial \Theta}, \quad (6)$$

$$\Delta p - \frac{\partial \psi}{\partial t} - \frac{1}{2} (\nabla \psi)^2 + \frac{1}{8\pi} (\nabla \Phi)^2 = \nabla \cdot \mathbf{n}, \quad (7)$$

$$\Psi(r,\Theta,t) = \Phi_s(t). \tag{8}$$

Кроме того, введем дополнительные условия, вытекающие из очевидных требований сохранения полного заряда и объема капли, а также неподвижности ее центра масс

$$-\frac{1}{4\pi} \oint_{S} (\mathbf{n} \cdot \nabla \Phi) ds = Q,$$

$$S = [r = 1 + \xi(\Theta, t), \ 0 \le \Theta \le \pi, \ 0 \le \phi \le 2\pi], \quad (9)$$

$$\int_{v} r^{2} dr \sin \Theta d\Theta d\phi = \frac{4}{3}\pi,$$

$$v = [0 \le r \le 1 + \xi(\Theta, t), \ 0 \le \Theta \le \pi, \ 0 \le \phi \le 2\pi], \quad (10)$$

$$\int \mathbf{e}_{r} r^{3} dr \sin \Theta d\Theta d\phi = 0,$$

 $v = [0 \leqslant r \leqslant 1 + \xi(\Theta, t), \ 0 \leqslant \Theta \leqslant \pi, \ 0 \leqslant \phi \leqslant 2\pi]. \ (11)$

Отметим, что поскольку условия (10), (11) должны выполняться в любой момент времени, в том числе и в начальный, то при t = 0 они определяют амплитуды нулевой и первой мод в разложении начального возмущения равновесной сферической формы поверхности капли $\xi(\Theta)$ в ряд по полиномам Лежандра. Другими словами, амплитуда нулевой и первой мод не могут быть произвольны, но зависят от вида начальной деформации.

Начальные условия задаются в виде начальной деформации равновесной сферической формы капли и равенства нулю начальной скорости движения поверхности

$$t = 0: \quad \xi(\Theta) = \xi_0 P_0(\mu) + \xi_1 P_1(\mu) + \varepsilon \sum_{i \in \Xi} h_i P_i(\mu),$$
$$\sum_{i \in \Xi} h_i = 1, \quad \frac{\partial \xi}{\partial t} = 0, \tag{12}$$

где Ξ — множество значений номеров изначально возбужденных колебательных мод; $\mu \equiv \cos \Theta$.

В выражениях (6)–(12) введены обозначения: Δp перепад постоянных давлений внутри и вне капли в состоянии равновесия; **n** — единичный вектор нормали к поверхности (1); $\Phi_s(t)$ — постоянный вдоль поверхности капли потенциал; ε — амплитуда начального возмущения формы поверхности капли; $P_i(\mu)$ — полиномы Лежандра порядка i; h_i — коэффициенты, определяющие парциальный вклад i-й колебательной моды в суммарное начальное возмущение; ξ_0 и ξ_1 — константы, определяемые из условий (10) и (11) в начальный момент времени и с точностью до слагаемых второго порядка малости по ε , равные

$$\xi_0 \approx -\varepsilon^2 \sum_{i \in \Xi} \frac{h_i^2}{(2i+1)} + O(\varepsilon^3),$$

$$\xi_1 \approx -\varepsilon^2 \sum_{i \in \Xi} \frac{9ih_{i-1}h_i}{(2i-1)(2i+1)} + O(\varepsilon^3).$$
(13)

В уравнениях (3), (5), (8), (9) предполагается, что в любой момент времени электрический заряд распределен по поверхности капли и находится в равновесии. Это предположение правомерно, если характерное время перераспределения заряда много меньше характерного гидродинамического времени колебания поверхности

$$\varepsilon_* \varepsilon_0 \lambda \ll \left(\frac{\rho R^3}{\sigma}\right)^{1/2},$$

где λ — удельное сопротивление жидкости, ε_* — диэлектрическая проницаемость.

Для капли дистиллированной воды ($\lambda = 10^4 \Omega \cdot m$, $\varepsilon_* = 80.08$, $\rho = 10^3 \text{ kg/m}^3$, $\sigma = 72.8 \cdot 10^{-3} \text{ N/m}$, $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}$) при R = 1 mm левая часть неравенства на два порядка меньше правой.

3. Для отыскания решения поставленной задачи с точностью до квадратичных по малому параметру ε слагаемых воспользуемся классическим методом многих масштабов [15]. Искомые фукнции $\xi(\Theta, t)$, $\psi(\mathbf{r}, t)$, $\Phi(\mathbf{r}, t)$ представим в виде рядов по степеням малого параметра ε и будем считать зависящими не просто от времени t, а от разных его масштабов, определенных через малый параметр $\varepsilon : T_m \equiv \varepsilon^m t$,

$$\xi(\Theta, t) = \sum_{m=0}^{\infty} \varepsilon^m \xi^{(m)}(\Theta, T_0, T_1, T_2, \dots);$$

$$\psi(\mathbf{r}, t) = \sum_{m=0}^{\infty} \varepsilon^m \psi^{(m)}(r, \Theta, T_0, T_1, T_2, \dots);$$

$$\Phi(\mathbf{r}, t) = \sum_{m=0}^{\infty} \varepsilon^m \Phi^{(m)}(r, \Theta, T_0, T_1, T_2, \dots).$$
 (14)

Отыскивая решение задачи стандартными для метода многих масштабов приемами (см., например, [13]), где эта процедура приведена подробно), получим выражение для изменения во времени формы поверхности капли

$$\begin{split} r(\Theta, t) &\approx 1 + \varepsilon \left\{ \sum_{i \in \Xi} M_i^{(1)}(t) P_i(\mu) \right\} \\ &+ \varepsilon^2 \left\{ \sum_{n=0}^{\infty} M_n^{(2)}(t) P_n(\mu) \right\} + O(\varepsilon^3), \\ M_i^{(1)}(t) &= h_i \cos(\omega_i t), \\ M_0^{(2)}(t) &= -\frac{1}{2} \sum_{i \in \Xi} \frac{h_i}{(2i+1)} \left(1 + \cos(2\omega_i t) \right), \\ M_1^{(2)}(t) &= -\sum_{i \in \Xi} \frac{9ih_{i-1}h_i}{(2i-1)(2i+1)} \cos(\omega_i t) \cos(\omega_{i-1} t), \\ M_n^{(2)} &= [N_n(t) - N_n(0) \cos(\omega_n t)], \quad n \ge 2, \\ N_n(t) &= \frac{1}{2} \sum_{i \in \Xi} \sum_{j \in \Xi} h_i h_j \left\{ \lambda_{ijn}^{(+)} \cos((\omega_i + \omega_j) t) \right. \\ &+ \lambda_{ijn}^{(-)} \cos((\omega_i - \omega_j) t) \right\}, \\ \omega_n^2 &\equiv n(n-1)[(n+2) - W]; \quad W \equiv \frac{Q^2}{4\pi}; \end{split}$$

Журнал технической физики, 2002, том 72, вып. 4

$$\begin{split} \lambda_{ijn}^{(\pm)} &\equiv [\gamma_{ijn} \pm \omega_i \omega_j \eta_{ijn}] [\omega_n^2 - (\omega_i \pm \omega_j)^2]^{-1}, \\ \gamma_{ijn} &\equiv K_{ijn} \Big[\omega_i^2 (n - i + 1) + 2n [j(j + 1) - 1] \\ &+ [j(i + 1) - i(2i - 2n + 7) + 3] n \frac{W}{2} \Big] \\ &+ \alpha_{ijn} \left[\frac{1}{i} \omega_i^2 + n \frac{W}{2} \right], \\ \eta_{ijn} &\equiv K_{ijn} \left(\frac{n}{2} - i + 1 \right) + \alpha_{ijn} \frac{1}{i} \left(1 + \frac{n}{2j} \right), \\ K_{ijn} &\equiv [C_{ijn}^{000}]^2, \quad \alpha_{ijn} &\equiv -\sqrt{i(i + 1)j(j + 1)} C_{ijn}^{000} C_{ijn}^{-110}, \\ C_{ijn}^{000} &\equiv \begin{cases} 0, \text{ если } i + j + n = 2g + 1, \\ & \text{где } g - \text{целое число,} \\ \frac{(-1)^{g-n} \sqrt{2n + 1g!}}{(g-i)!(g-j)!(g-n)!} \left[\frac{(2g-2i)!(2g-2j)!(2g-2n)!}{(2g+1)!} \right]^{1/2}, \end{cases}$$

если i + j + n = 2g (g — целое число),

110

$$C_{ijn}^{i,i0} \equiv \sqrt{2n+1n!} \\ \times \left[\frac{(i+j-n)!\,i(i+1)}{(n+i-j)!(n-i+j)!(i+j+n+1)!j(j+1)} \right]^{1/2} \\ \times \sum_{z} \frac{(-1)^{i+1+z}(i+z-1)!(n+j-z+1)!}{z!(i-z+1)!(n-z)!(j-n+z-1)!}.$$
(15)

В последней сумме суммирование ведется по всем целым значениям z, для которых выражения под знаком факториала неотрицательны. Отметим, что C_{ijn}^{000} и C_{ijn}^{-110} — коэффициенты Клебша–Гордана [16], которые отличны от нуля, только если нижние индексы удовлетворяют следующим соотношениям: $|i - j| \le n \le (i + j)$, i + j + n = 2g (g — целое число).

Из выражения (15) следует, что если в спектре мод, описывающих начальное возмущение поверхности, присутствуют две соседние колебательные моды: четная и нечетная, то амплитуда первой моды отлична от нуля. Это обеспечит неподвижность центра масс и его позиционирование при $t \ge 0$ в начале системы координат путем компенсации того смещения центра масс капли, которое вызвано возбуждением двух соседних колебательных мод. Заметим, что обсуждавшаяся в [14] трансляционная неустойчивость пузыря при возбуждении двух соседних мод колебаний его поверхности связана с некорректной постановкой начальных условий: с отсутствием в приведенной в [14] постановке задачи условия неподвижности в начальный момент времени системы координат, связанной с центром масс капли. Иными словами, в [14] при t = 0 скорость центра масс капли относительно лабораторной системы координат отлична от нуля.

Временны́е зависимости амплитуд мод, возбуждаемых за счет межмодового взаимодействия во втором порядке малости по ε , при различных видах начальной деформации равновесной сферической формы капли приведены

Рис. 1. Зависимости от безразмерного времени *t* безразмерных амплитуд $M_n^{(2)}$ различных мод капиллярных осцилляций заряженной капли, возбуждающих во втором порядке малости в результате взаимодействия мод при W = 3.9, $\varepsilon = 1$ и начальной деформации в линейном по ε приближении: $a - \varepsilon [P_2(\mu) + P_3(\mu)]/2$, $b - \varepsilon [P_3(\mu) + P_4(\mu)]/2$, $c - \varepsilon [P_4(\mu) + P_6(\mu)]/2$. Цифры у кривых совпадают с номером моды.

Puc. 2. To we, что и на рис. 1, при $\varepsilon[P_2(\mu) + P_3(\mu) + P_4(\mu)]/3$ (a), $\varepsilon[P_3(\mu) + P_4(\mu) + P_5]/3$ (b).

на рис. 1 и 2. Когда начальная деформация определяется суперпозицией двух мод, равной амплитуды, результаты представлены на рис. 1, а для трех мод равной амплитуды — на рис. 2. Согласно приведенным данным, из всех мод наибольшей скоростью роста обладает амплитуда основной моды, что связано, по-видимому, с наименьшей энергией ее возбуждения. Причем, согласно рис. 1, a-c, когда начальная деформация равновесной формы капли определена двумя различными модами, скорость нарастания амплитуды основной моды повышается с увеличением номеров мод, возбужденных в начальный момент времени. Для изначального возбуждения трех мод можно отметить ту же тенденцию. Такая закономерность, вероятно, объясняется тем, что при ε = const энергия, вводимая в рассматриваемую колебательную

систему, быстро нарастает с увеличением номеров мод, определяющих начальную деформацию.

Количество мод, возбуждаемых во втором порядке малости, определяется тем, что коэффициенты $\lambda_{iin}^{(\pm)}$ и $\lambda_{jin}^{(\pm)}$ в выражениях (15) отличны от нуля лишь для четных значений *n*, принадлежащих диапазонам [0, 2*i*] и [0, 2*j*] соответственно, а $\lambda_{iin}^{(\pm)}$ и $\lambda_{jin}^{(\pm)}$ — для значений *n* из диапазона [|i - j|, (i + j)], удовлетворяющих условию, что n + i + j четное. Поэтому при одновременном возбуждении двух мод, четной и нечетной (с номерами *k* и *p*), в результате их взаимодействия будут генерироваться колебания всех четных мод из диапазона [0; max(2*k*, 2*p*)] и всех нечетных мод из диапазона [|k - p|, (k + p)]. При начальном возбуждении двух четных либо двух нечетных мод во втором порядке малости проявится возмущение только четных мод из диапазона [0; max(2*k*, 2*p*)].

4. Остановимся подробнее на вопросе о том, происходит ли смещение центра заряда капли при нелинейных колебаниях ее поверхности.

Радиус-вектор центра заряда колеблющейся капли \mathbf{R}_q определяется соотношением

$$\mathbf{R}_{q} = \frac{1}{Q} \int_{S} \mathbf{r} dQ = -\frac{1}{4\pi Q} \int_{S} (\mathbf{n} \cdot \boldsymbol{\nabla} \Phi) \mathbf{r} dS$$
$$= -\frac{1}{4\pi Q} \int_{\Omega} \frac{(\mathbf{n} \cdot \boldsymbol{\nabla} \Phi)}{(\mathbf{n} \mathbf{e}_{r})} r^{3}(\Theta, t) \mathbf{e}_{r} d\Omega,$$

где $\Omega \equiv [0 \leqslant \Theta \leqslant \pi; 0 \leqslant \phi \leqslant 2\pi]$, а $r(\Theta, t)$ определяется выражением (15).

Радиальный орт **e**_r сферической системы координат связан с ортами декартовой системы координат

 $\mathbf{e}_r = \mathbf{e}_x \sin \Theta \cos \phi + \mathbf{e}_y \sin \Theta \sin \phi + \mathbf{e}_z \cos \Theta.$

Выразим проекции вектора \mathbf{R}_q на декартовы оси через сферические функции $Y_n^m(\Theta, \phi)$, учитывая соотношения

$$\cos \Theta = \sqrt{\frac{4\pi}{3}} Y_1^0(\Theta, \phi);$$

$$\sin \Theta \cos \phi = -\sqrt{\frac{2\pi}{3}} [Y_1^1(\Theta, \phi) + Y_1^{-1}(\Theta, \phi)],$$

$$\sin \Theta \sin \phi = i\sqrt{\frac{2\pi}{3}} [Y_1^1(\Theta, \phi) - Y_1^{-1}(\Theta, \phi)].$$

Для проекций вектора \mathbf{R}_q получим выражения

$$R_{qx} = \frac{1}{2\sqrt{6\pi}Q} \int_{\Omega} [r(\Theta, t)]^{3} \frac{(\mathbf{n} \cdot \nabla \Phi)}{(\mathbf{n}\mathbf{e}_{r})}$$

$$\times [Y_{1}^{1}(\Theta, \varphi) + Y_{1}^{-1}(\Theta, \varphi)] d\Omega,$$

$$R_{qy} = -\frac{i}{2\sqrt{6\pi}Q} \int_{\Omega} [r(\Theta, t)]^{3} \frac{(\mathbf{n} \cdot \nabla \Phi)}{(\mathbf{n}\mathbf{e}_{r})}$$

$$\times [Y_{1}^{1}(\Theta, \varphi) - Y_{1}^{-1}(\Theta, \varphi)] d\Omega,$$

$$R_{qz} = \frac{1}{2\sqrt{3\pi}Q} \int_{\Omega} [r(\Theta, t)]^{3} \frac{(\mathbf{n} \cdot \nabla \Phi)}{(\mathbf{n}\mathbf{e}_{r})} Y_{1}^{0}(\Theta, \varphi) d\Omega. \quad (16)$$

Журнал технической физики, 2002, том 72, вып. 4

Подставляя (1) и разложения (14), представим подынтегральное выражение в (16) в виде ряда по степеням малого параметра ε с точностью до слагаемых порядка $O(\varepsilon^3)$

$$[r(\Theta, t)]^{3} \frac{(\mathbf{n} \cdot \nabla \Phi)}{(\mathbf{n} \mathbf{e}_{r})} \approx -Q + \varepsilon \left[\frac{\partial \Phi^{(1)}}{\partial r} - Q\xi^{(1)} \right]_{r=1} + \varepsilon^{2} \left[\frac{\partial \Phi^{(2)}}{\partial r} - Q\xi^{(2)} + \left(\frac{\partial^{2} \Phi^{(1)}}{\partial r^{2}} + 3 \frac{\partial \Phi^{(1)}}{\partial r} \right) \xi^{(1)} - \frac{\partial \Phi^{(1)}}{\partial \Theta} \frac{\partial \xi^{(1)}}{\partial \Theta} \right]_{r=1} + O(\varepsilon^{3}),$$

а учитывая вид функций $\xi^{(1)}(\Theta, t)$ и $\xi^{(2)}(\Theta, t)$ из (15) и решение для потенциала $\Phi(\mathbf{r}, t)$, полученное из краевой задачи (3), (5), (8), (9),

$$\begin{split} \Phi^{(1)}(r,\Theta,t) &= Q \sum_{i=\Xi} M_i^{(1)}(t) r^{-(i+1)} P_i(\mu), \\ \Phi^{(2)}(r,\Theta,t) &= Q \sum_{n=1}^{\infty} M_n^{(2)}(t) \\ &+ \sum_{i\in\Xi} \sum_{j\in\Xi} i K_{ijn} M_i^{(1)}(t) M_j^{(1)}(t)] r^{-(n+1)} P_n(\mu) \end{split}$$

запишем подынтегральное выражение в виде разложения по полиномам Лежандра

$$[r(\Theta, t)]^{3} \frac{(\mathbf{n} \cdot \nabla \Phi)}{(\mathbf{n} \mathbf{e}_{r})} \approx -QP_{0}(\mu)$$

$$- \varepsilon Q \sum_{i \in \Xi} (i+2)h_{i} \cos(\omega_{i}t)P_{i}(\mu)$$

$$- \varepsilon^{2}Q \sum_{n=0}^{\infty} \left\{ (n+2-\delta_{n,0})M_{n}^{(2)}(t) - \sum_{i \in \Xi} \sum_{j \in \Xi} [((i-1)(i+1)-i(n+1-\delta_{n,0}))K_{ijn} - \alpha_{ijn}]M_{i}^{(1)}(t)M_{j}^{(1)}(t) \right\} P_{n}(\mu) + O(\varepsilon^{3}).$$
(17)

При выводе (17) были использованы следующие разложения, выведенные на основе разложения Клебша– Гордана [16]:

$$P_i(\mu)P_j(\mu) = \sum_{n=0}^{\infty} K_{ijn}P_n(\mu),$$

 $rac{\partial P_i}{\partial \Theta} rac{\partial P_j}{\partial \Theta} = \sum_{n=0}^{\infty} lpha_{ijn}P_n(\mu),$

где коэффициенты K_{ijn} и α_{ijn} определены в (15).

Подставляя (17) в (16), переходя от полиномов Лежандра к сферическим функциям [16]

$$P_j(\mu) = \sqrt{\frac{4\pi}{(2j+1)}} Y_j^0(\Theta, \phi)$$

и учитывая условие ортонормированности сферических функций

$$\int_{\Omega} Y_j^m(\Theta,\phi) [Y_n^k(\Theta,\phi)]^* d\Omega = \delta_{j,n} \delta_{m,k}, \qquad (18)$$

заметим, что при возбуждении осесимметричных (относительно оси z) колебаний поверхности капли, когда возмущение ее равновесной сферической формы $\xi = xi(\Theta, t)$ не зависит от угла ϕ , подынтегральное выражение (17) представлено в виде ряда по сферическим функциям с нулевым верхним индексом Y_j^0 и в силу (18) смещения центра заряда в плоскости x, y не происходит

$$R_{qx} = R_{qy} = 0.$$

Его смещение вдоль оси ОZ описывается выражением

$$R_{qz} \approx \varepsilon^{2} \left\{ M_{1}^{(2)}(t) + \frac{1}{3} \sum_{i \in \Xi} \sum_{j \in \Xi} [\alpha_{ij1} - ((i-1)(i+1) - 2i)K_{ij1}] M_{i}^{(1)}(t) M_{j}^{(1)}(t) \right\} + O(\varepsilon^{3}).$$
(19)

Напомним, что, согласно определениям, введенным в (15), коэффициенты α_{ijn} и K_{ijn} выражаются через коэффициенты Клебша–Гордана и потому отличны от нуля, только если индексы удовлетворяют соотношениям 1) i + j + n = 2g (где g — целое); 2) $|i - j| \leq n \leq (i + j)$. Для нашего случая n = 1 из этих условий получаем

$$i + j = 2g - 1,$$
 (20)

$$|i-j| \leqslant 1 \leqslant i+j. \tag{21}$$

Правое неравенство в (21) выполняется всегда, поскольку в спектре возбужденных колебательных мод Ξ отсутствуют нулевая и первая моды. Левое неравенство в (21) дает следующее: при $j \leq i$ получаем j = i, i - 1, при j > i получаем j = i + 1. Следовательно, для фиксированного *i* индекс *j* должен принимать значения $\{i - 1; i; i + 1\}$. Однако значение j = i не удовлетворяет требованию (20). Таким образом, чтобы коэффициенты λ_{ij1} и K_{ij1} были отличны от нуля, в спектре возбуждения мод для заданного номера моды *i* необходимо присутствие также хотя бы одной из мод с номером (i + 1) или (i - 1), т.е. соседние с *i*-й модой. В этом случае будет иметь место смещение центра заряда вдоль оси *z*.

Воспользовавшись явным видом коэффициентов Клебша–Гордана [16], несложно получить с использованием символов Кронекера $\delta_{m,k}$

$$K_{ij1} = \delta_{j,i-1} \frac{3i}{(2i-1)(2i+1)} + \delta_{j,i+1} \frac{3(i+1)}{(2i+1)(2i+3)},$$

$$\alpha_{ij1} = \delta_{j,i-1}(i-1)(i+1)K_{ij1} + \delta_{j,i+1}i(i+2)K_{ij1}, \quad (22)$$

Рис. 3. Зависимости от безразмерного времени *t* безразмерного смещения центра заряда капли R_{qz} при W = 3.9, $\varepsilon = 0.1$. *I* — начальное возбуждение равновесной сферической формы капли в линейном по ε приближении вида $\varepsilon[P_2(\mu) + P_3(\mu)]/2$, $2 - \varepsilon[P_3(\mu) + P_4(\mu)]/2$, $3 - \varepsilon[P_2(\mu) + P_3(\mu) + P_4(\mu)]/3$.

Подставляя (22) в (19) и переобозначая индексы, приведем (19) к более компактному виду

$$R_{qz} \approx \varepsilon^2 \left\{ M_1^{(2)}(t) + \sum_{i \in \Xi} \frac{3i}{(2i+1)} M_i^{(1)}(t) M_{i-1}^{(1)}(t) \right\}.$$
 (23)

Наконец, учитывая выражения для коэффициентов $M_i^{(1)}$ и $M_1^{(2)}$, приведенные в (15), и переходя к размерным переменным для смещения центра заряда вдоль оси *z* во втором порядке малости по возмущению поверхности, запишем окончательное выражение

$$R_{qz} \approx \varepsilon^2 R \sum_{i \in \Xi} \frac{6i(i-2)}{(2i-1)(2i+1)} h_i h_{i-1} \cos(\omega_i t) \cos(\omega_{i-1} t)$$

$$\equiv \varepsilon^2 R \sum_{i \in \Xi} \frac{3i(i-2)}{(2i-1)(2i+1)} h_i h_{i-1}$$

$$\times \left[\cos[(\omega_i + \omega_{i-1})t] + \cos[(\omega_i - \omega_{i-1})t] \right],$$

$$\omega_i^2 \equiv \frac{\sigma}{\rho R^3} i(i-1) \left[(i+2) - \frac{Q^2}{4\pi\sigma R^3} \right].$$
(24)

График зависимости $R_{qz} = R_{qz}(t)$ для некоторых конкретных значений номеров изначально возбужденных соседних мод приведен на рис. 3.

5. Наличие осцилляций центра заряда капли превращает ее в излучатель электромагнитных волн дипольного типа. Рассмотрим случай, когда изначально возбуждены две соседние моды i и i - 1. Интенсивность электромагнитного излучения от единичной капли I_e в соответствии

с известным [17] выражением запишется в виде

$$egin{aligned} & H_e = rac{4}{3c^3} \Big\{ |d_{\omega_i + \omega_{i+1}}|^2 (\omega_i + \omega_{i+1})^4 \ & + |d_{\omega_{i+1} - \omega_i}|^2 (\omega_{i+1} - \omega_i)^4 \Big\}, \end{aligned}$$

где c — скорость света в вакууме; d_{ω_j} — дипольный момент капли, центр заряда которой осциллирует с частотой ω_j .

В рассматриваемой ситуации согласно (24) имеем

$$l_{\omega_i+\omega_{i+1}}\equiv d_{\omega_{i+1}-\omega_i}\equiv Q\overline{R_{qz}},$$

 $\overline{R_{qz}}$ — амплитудное значение R_{qz} . Поэтому получим

$$I_e = \frac{4}{3c^3} Q^2 (\overline{R_{qz}})^2 \{ (\omega_i + \omega_{i+1})^4 + (\omega_{i+1} - \omega_i)^4 \}.$$
 (25)

Из (25) с учетом (24) можно оценить по порядку величины интенсивность фонового шумового электромагнитного излучения от различных жидкокапельных систем искусственного и естественного происхождения, например таких, как конвективные облака. Следует отметить, что в [18] в рамках линейного анализа была проведена оценка интенсивности электромагнитного излучения из кучевого облака. В основе предложенного в [18] физического механизма лежало интегральное мультипольное (начиная с квадрупольного) излучение крупных сильно заряженных гидрометеоров (капель с $R = 1 \, \text{mm}$), свободно падающих в облаке и коагулирующих с более мелкими и заряженными же капельками с радиусами 10 µ. Полученная в [18] интегральная интенсивность мультипольного электромагнитного излучения (за исключением дипольного, не появляющегося в линейном анализе) облака диаметром 5 km, равная $I = 3 \cdot 10^{-2}$ W, серьезно завышена как за счет использования при расчетах максимально возможных зарядов гидрометеоров, а не средних их значений (которые на несколько порядков меньше), так и за счет завышения концентрации гидрометеоров использованного размера.

Проведем оценку интенсивности фонового дипольного электромагнитного излучения на основе (24), (25), когда смещение центра заряда связано с возбуждением всего двух соседних мод с i = 100 и i + 1 = 101(отметим, что в этом случае из суммы, определяющей, согласно (24), амплитуду смещения центра заряда R_{az} , останется лишь одно слагаемое с i = 101) для капли со средними характеристиками: радиусом $R = 30 \, \mu m$ и зарядом $Q = 2.5 \cdot 10^5$ CGSE. Концентрация таких капель, по справочным данным [19], в кучевом облаке составляет $n \approx 10^3 \,\mathrm{cm}^{-3}$. Примем также, что $\varepsilon^2 = 0.1$, $h_{100} = h_{101} = 0.5, \sigma = 73$ dyne/cm, $\rho = 1$ g/cm³. Тогда интенсивность фонового электромагнитного излучения, связанная с движением центра заряда (с возбуждением трансляционной моды) капель указанного размера при возбуждении колебаний поверхности капель за счет микрофизических внутриоблачных процессов (коагуляции

Рис. 4. Зависимость безразмерной амплитуды $M_1^{(2)}$ осцилляций первой (n = 1) моды поверхности капли, от безразмерного времени *t*. Кривые 1-3 — см. виды приближения на рис. 3.

с более мелкими, испарения, конденсации, гидродинамического и электрического взаимодействия с соседними каплями), из облака диаметром 5 km (как это было принято в [18]) составит $I \approx 10^{-6}$ W и будет идти на частотах порядка мегагерц.

Если принять, что возбуждены не две соседние моды, но целый диапазон соседних мод от k до k + m, то интегральная интенсивность излучения увеличится $\sim m$.

6. Из выражения (15), описывающего форму колеблющейся капли в произвольный момент времени, несложно видеть, что когда среди колебательных мод, определяющих форму начального возмущения, имеются две моды с последовательными номерами, то в спектре колебаний, возбужденных во втором порядке малости, присутствует мода с n = 1, соответствующая трансляционному движению. Появление такой моды есть следствие требования неподвижности центра масс колеблющейся капли (11). График зависимости амплитуды осцилляций моды с n = 1 для некоторых конкретных значений номеров изначально возбужденных соседних мод приведен на рис. 4.

Если окружающая среда не вакуум и является сжимаемой с плотностью ρ_* , кинематической вязкостью v, скоростью звука V, то осцилляции моды с n = 1, связанные с нелинейными колебаниями капли, приведут к генерации в среде звуковых волн дипольного типа на частотах ($\omega_i + \omega_{i+1}$), ($\omega_i - \omega_{i+1}$). Отметим, что линейный анализ звукового излучения от колеблющихся капель приводит к излучению мультипольного типа (начиная с квадрупольного, связанного с осцилляциями основной моды n = 2). Дипольное излучение звука каплей в линейном анализе не обнаруживается. Выражение для интенсивности дипольного звукового излучения от капли I_s , когда радиус капли R сравним по величине с $(v/\omega_i)^{1/2}$, определится выражением [20]

$$I_{s} \equiv \frac{3\pi\rho_{*}\nu^{2}R^{2}}{2V^{2}} \Big\{ (\omega_{i} + \omega_{i+1})^{2} |U_{\omega_{i} + \omega_{i+1}}|^{2} + (\omega_{i+1} - \omega_{i})^{2} |U_{\omega_{i+1} - \omega_{i}}|^{2} \Big\},$$
(26)

где U_j — амплитудное значение скорости движения поверхности капли, связанной с *j*-й частотой ее осцилляций.

В рассматриваемой ситуации, принимая, что появление трансляционной моды (i = 1) связано с наличием в спектре мод, обусловливающих начальную деформацию двух мод с соседними номерами i и i + 1, согласно (15), будем иметь

$$U_{\omega_i+\omega_{i+1}} \approx \varepsilon^2 R \, \frac{9ih_{i-1}h_i}{(2i-1)(2i+1)} \, h_i h_{i-1}(\omega_i+\omega_{i+1}), \quad (27)$$

$$|U_{\omega_i - \omega_{i+1}}| \approx \varepsilon^2 R \, \frac{9ih_{i-1}h_i}{(2i-1)(2i+1)} \, h_i h_{i-1}(\omega_i - \omega_{i+1}). \tag{28}$$

Подставим (27), (28) в (26) и окончательно получим

$$I_{s} \equiv \frac{3\pi\rho_{*}v^{2}R^{2}}{2V^{2}} \left\{ \varepsilon^{2}R \, \frac{9ih_{i-1}h_{i}}{(2i-1)(2i+1)} h_{i}h_{i-1} \right\}^{2} \\ \times \left\{ (\omega_{i} + \omega_{i+1})^{4} + (\omega_{i+1} - \omega_{i})^{4} \right\}.$$
(29)

Оценим интенсивность дипольного звукового излучения, связанного с появлением трансляционной моды в спектре капиллярных колебаний поверхности капли дождя с $R = 250 \,\mu$ m, которая совершает осцилляции за счет возбуждения второй и третьей мод своих колебаний при $\sigma = 73$ dyne/cm, $\rho = 1 \text{ g/cm}^3$, $\rho_* = 1.3 \cdot 10^{-3} \text{ g/cm}^3$, $V = 3.3 \cdot 10^4$ cm/s, W = 1, $\varepsilon = 0.1$, $v = 0.15 \text{ cm}^2/\text{s}$, $h_2 = h_3 = 0.5$. Из (29) несложно оценить интенсивность дипольного звукового излучения от одной капли $I_s \approx 10^{-13}$ erg/s. Интегральная плотность мощности излучения звука на частоте порядка десятка килогерц на границе пространства, занятого дождем, в 1 km³ будет $\approx 28 \text{ dB}$ (что соответствует силе звука человеческой речи).

Заключение

Возбуждение трансляционной моды осциллирующих капель, обнаруживаемое при асимптотических расчетах во втором порядке малости, когда среди колебательных мод, определяющих форму начальной деформации равновесной сферической формы капли, имеются две и больше мод с соседними номерами, приводит к появлению дипольного звукового излучения от таких капель. При наличии на капле собственного электрического заряда оно приводит и к дипольному электромагнитному излучению. Указанные эффекты могут играть важную роль в анализе физических процессов, идущих в многофазных жидкокапельных системах искусственного и естественного происхождения: облаках, туманах, дожде. Работа выполнена при поддержке гранта Президента РФ (№ 00-15-9925).

Список литературы

- Григорьев А.И., Ширяева С.О. // Изв. РАН. МЖГ. 1994.
 № 3. С. 3–22.
- [2] Григорьев А.И. // ЖТФ. 2000. Т. 70. Вып. 5. С. 22-27.
- [3] Белоножко Д.Ф., Григорьев А.И. // ЭОМ. 2000. № 4. С. 17–28.
- [4] Tsamopoulos J.A., Brown R.A. // J. Fluid Mech. 1984. Vol. 147. P. 373–395.
- [5] Tsamopoulos J.A., Akylas T.R., Brown R.A. // Proc. Roy. Soc. London. 1985. Vol. A401. P. 67–88.
- [6] Basaran O.A., Scriven L.E. // Phys. Fluids. A. 1989. Vol. 1. N 5. P. 795–798.
- [7] Natarayan R., Brown R.A. // Proc. Roy. Soc. London. 1987.
 Vol. A410. P. 209–227.
- [8] Pelekasis, Tsamopoulos J.A., Manolis G.D. // Phys. Fluids. 1990. Vol. A2. N 8. P. 1328–1340.
- [9] Feng Z. // J. Fluid Mech. 1997. Vol. 333. P. 1-21.
- [10] Ширяева С.О., Григорьев А.И., Белоножко Д.Ф. // Письма в ЖТФ. 2000. Т. 26. Вып. 19. С. 16–23.
- [11] Ширяева С.О. // Письма в ЖТФ. 2000. Т. 26. Вып. 22. С. 76–83.
- [12] Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 2000. Т. 70. Вып. 8. С. 45–52.
- [13] Ширяева С.О. // ЖТФ. 2001. Т. 71. Вып. 2. С. 27-34.
- [14] Feng Z.C., Leal L.G. // Phys. Fluids. 1995. Vol. 7. № 6. P. 1325–1336.
- [15] Найфе А. Методы возмущений. М.: Мир, 1976. 455 с.
- [16] Варшалович Д.А., Москалев А.Н., Херсонский В.К. Квантовая теория углового момента. Л.: Наука, 1975. 439 с.
- [17] Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1967. 460 с.
- [18] Калечиц В.И., Нахутин И.Е., Полуэктов П.П. // ДАН СССР. 1982. Т. 262. № 6. С. 1344–1347.
- [19] Облака и облачная атмосфера. Справочник / Под ред. И.П. Мазина, А.Х. Хргиана, И.М. Имянитова. Л.: Гидрометеоиздат, 1989. 647 с.
- [20] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 733 с.