01;03;05

Модель локального плавления границ зерен, содержащих сегрегации примесных атомов

© В.Н. Перевезенцев, Ю.В. Свирина, А.Ю. Угольников

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Поступило в Редакцию 16 января 2001 г. В окончательной редакции 2 октября 2001 г.)

Построена модель, описывающая начальные стадии локального плавления границ зерен, содержащих сегрегации примесных элементов. Процесс локального плавления описывается как возникновение жидких участков, геометрия и число которых зависят от исходной концентрации и термодинамических характеристик атомов примеси, параметров материала и температуры. Описана эволюция жидкотвердой структуры границы с увеличением температуры. Получены температурные зависимости параметров жидкотвердой границы при различной исходной концентрации примеси.

Введение

Известно, что некоторые микрокристаллические алюминиевые сплавы и композиты обнаруживают способность к сверхпластической деформации с аномально высокими скоростями (до 10³ s⁻¹) при температурах, близких к солидусу [1-7]. Исследование высокоскоростной сверхпластичности показало, что этот эффект обусловлен локальным плавлением границ зерен. Экспериментальные исследования локального плавления границ с помощью методов дифференциальной сканирующей калориметрии, просвечивающей электронной микроскопии и оже-спектроскопии позволили выявить следующие характерные особенности этого явления [6]: 1) локальное плавление границ тесно сязано с сегрегацией на границах примесных атомов (в частности, в алюминиевых сплавах важную роль играют сегрегации кремния и магния на межзеренных и межфазных границах); 2) температура начала локального плавления границ может отличаться от температуры солидуса на величину от нескольких градусов до десятков градусов в зависимости от фазового и химического состава сплава; 3) в условиях локального плавления в границах наблюдаются как жидкие, так и твердые участки; 4) толщина жидкого слоя на завершающих стадиях локального плавления границ не превышает 30 mm. Попытки теоретического описания жидкотвердой структуры границ зерен, учитывающего перечисленные особенности, и приложения теории к проблеме описания высокоскоростной сверхпластичности были предприняты в работах [8,9]. В [8] была предложена модель структуры границы на завершающих стадиях локального плавления, основанная на рассмотрении границы зерна в виде жидкой прослойки, содержащей твердые участки. Основным недостатком этой модели является предположение о плоской геометрии жидкотвердой границы. Более реалистичная модель, учитывающая условия фазового и химического равновесия на границах раздела жидкой и твердой фаз, была развита в [9]. Предложенный в [9] подход был применен для анализа температурной зависимости скорости сверхпластической деформации на начальных стадиях локального плавления [10].

Целью настоящей работы является развитие модели локального плавления границ и анализ влияния концентрации и термодинамических характеристик сегрегирующих на границах атомов примеси, а также параметров материала на структуру границы на начальных стадиях локального плавления. Применение этой модели для описания закономерностей высокоскоростной сверхпластичности будет предметом последующих публикаций.

Модель жидкотвердой структуры границы зерна

Предположим, что на начальной стадии локального плавления граница зерна может быть представлена как твердый слой толщины δ_0 , содержащий примесные атомы. Концентрация примесных атомов $C_0 \gg C_0^v$, где C₀^v — концентрация примеси в объеме зерна. Можно предположить, что на начальной стадии локального плавления возникают изолированные жидкие участки (жидкие капли) и их количество растет с ростом температуры. Поэтому будем описывать жидкотвердую структуру границы зерна как твердый слой зернограничной фазы, содержащий равномерно распределенные жидкие капли. В процессе локального плавления происходит перераспределение примеси между жидкими и твердыми участками границы. Пусть C_i^L и C_i^b — концентрации примесных атомов в жидких и твердых участках границы соответственно. Чтобы описать структуру границы зерна необходимо определить параметры, характеризующие равновесную геометрию жидких капель, число жидких участков и концентрацию примесных атомов в жидких и твердых участках границы. В общем случае геометрия жидких участков в условиях равновесия фаз может быть представлена как два сферических сегмента с радиусом кривизны R, высотой $y = (\delta - \delta_0)/2$ (δ — толщина жидких участков), радиусом основания r_L , разделенных цилиндром высоты δ_0 (рис. 1). Чтобы определить параметры, описывающие геометрию жидких участков

Рис. 1. Схема структуры жидкотвердой границы: *I* — зерно I, *2* — зерно II.

 $(y, R \ u \ r_L)$, проанализируем условия равновесия сил, действующих на границах жидкой и твердой фаз (на границе между телом зерна и жидким участком L/G и границе между жидким участком и твердой зернограничной фазой L/SB). Условие равновесия на границе L/G может быть зависано в виде

$$2\gamma_{L/S}/R + q\Delta T/T = (C_i^L - C_0^v)kT, \qquad (1)$$

где $\Delta T = T_m - T$ (T_m — абсолютная температура плавления); $q = \lambda_m \rho$ — удельная теплота плавления при постоянном давлении и $\gamma_{L/S}$ — энергия границы между жидкой и твердой фазами на единицу площади.

Первое слагаемое в левой части уравнения (1) описывает поверхностное давление, второе слагаемое описывает конфигурационное давление, связанное с изменением свободной энергии объема в процессе фазового перехода, слагаемое в правой части уравнения — осмотическое давление примесных атомов. Условие равновесия на границе *L/SB* имеет вид

$$\gamma_{L/S}/r_L + q\Delta T/T + (2\gamma_{L/S}\cos\varphi - \gamma_b)/\delta_0 = (C_i^L - C_i^b)kT, \quad (2)$$

где γ_b — поверхностная энергия границы зерна (поверхностное натяжение).

Третье слагаемое в левой части уравнения (2) описывает давление на границу L/SB, обусловленное силами поверхностного натяжения L/G границ и L/SB границы. φ — угол между границей L/G и начальной плоскостью границы (рис. 1). С учетом соотношения $\cos \varphi = 1 - y/R$ уравнение (2) можно записать как

$$\gamma_{L/S}/r_L + q\Delta T/T + \Delta \gamma/\delta_0 - 2\gamma_{L/S}y/\delta_0 R = (C_i^L - C_i^b)kT, \quad (3)$$

где $\Delta \gamma = 2\gamma_{L/S} - \gamma_b$.

Параметры y, R и r_L связаны соотношением

$$r_L^2 = y(2R - y).$$
 (4)

Для описания структуры жидкотвердой границы необходимо также определить число жидких капель n_L на единицу площади границы зерен. Дополним систему уравнений (1), (3), (4) выражением, описывающим сохранение числа примесных атомов в процессе плавления. В предельном случае, когда оттоком примесных атомов с границы в тело зерен в процессе локального плавления можно принебречь, это уравнение имеет вид

$$C_0\delta_0 = C_i^b\delta_0(1-\alpha_L) + C_i^L\delta_0\alpha_L + C_i^L2V_Ln_L, \qquad (5)$$

где $V_L = (1/3)\pi y^2(3R - y)$ — объем сферического сегмента, n_L — число жидких капель на единицу площади границы зерен, $\alpha_L = \pi n_L r_L^2$ — доля жидкой фазы.

Слагаемое в правой части уравнения (5) описывает количество примесных атомов на единицу площади твердых участков границы, второе и третье — количество примесных атомов в жидкой фазе. Решая систему уравнений (1), (3)–(5) можно найти аналитические зависимости для геометрических параметров n_L , y, R, r_L от C_i^L , C_i^b и T.

Для нахождения температурных зависимостей параметров n_L , y, R, r_L необходимо получить температурные зависимости концентраций примесных атомов C_i^L и C_i^b . Для этого воспользуемся еще двумя дополнительными условиями. Первое из них описывает условие химического равновесия между примесными атомами в жидкой и твердой зернограничных фазах

$$\Psi_{i}^{L} + kT \ln C_{i}^{L} a^{3} = \Psi_{i}^{b} + kT \ln C_{i}^{b} a^{3}, \qquad (6)$$

где Ψ_i^L и Ψ_i^b — химпотенциалы примеси в жидкой и твердой фазах соответственно, a — межатомное расстояние.

Это условие означает, что между жидкой и твердой фазой в условиях равновесия отсутствует диффузия примесных атомов. Второе уравнение запишем, предполагая, что в процессе локального плавления имеет место термодинамическое равновесие и свободная энергия системы не меняется ($\Delta F = 0$). Выражения для ΔF может быть записано в виде

$$\Delta F = \Delta F_{\gamma} + \Delta F_m + \Delta G_i = 0, \tag{7}$$

где ΔF_{γ} — изменение поверхностной энергии в процессе локального плавления, ΔF_m — изменение объемной энергии, ΔG_i — изменение химпотенциала примесных атомов.

В свою очередь выражения для ΔF_{γ} и ΔF_m на единицу площади границы могут быть записаны как

$$\Delta F_{\gamma} = 4\pi R y n_L \gamma_{L/S} + 2\pi r_L \delta_0 n_L \gamma_{L/S} - \gamma_b \pi n_L r_L^2, \quad (8)$$

$$\Delta F_m = (q \Delta T/T - C_i^L k T) 2 V_L n_L + (q \Delta T/T)$$

$$- (C_i^L - C_i^b) k T \delta_0 \pi n_L r_L^2 + (C_0 - C_i^b) k T \delta_0. \quad (9)$$

В правой части уравнения (8) первое и второе слагаемые описывают увеличение поверхностной энергии системы при появлении жидких капель, третье слагаемое — уменьшение поверхностной энергии границы зерна, связанное с исчезновением твердых участков границы в процессе локального плавления. В правой части уравнения (9) первое слагаемое описывает изменение энергии в процессе плавления тела зерен, второе слагаемое — изменение энергии в процессе плавления

Рис. 2. Температурная зависимость радиуса жидких капель: a — при различной исходной концентрации примесных атомов $C'_0 = C_0 a^3$ (цифры у кривых), b — при различных значениях термодинамических характеристик атомов примеси $\Delta \Psi' = \Delta \Psi/kT_m$ (цифры у кривых).

зернограничной фазы и третье слагаемое — изменение химпотенциала зернограничных атомов за счет перераспределения примеси в процессе локального плавления.

Выражение для изменения химпотенциала примесных атомов имеет вид

$$\Delta G_i = -C_0 \delta_0 \left(\Delta \Psi + kT \ln(C_0 / C_i^L) \right), \qquad (10)$$

где $C_0 \delta_0$ — количество примеси на единицу площади границы и $\Delta \Psi = \Psi_i^b - \Psi_i^L$.

Система (1), (3)–(7) является самосогласованной системой уравнений, позволяющей при заданных параметрах материала ($\gamma_{L/S}$, γ_b , q, δ_0), параметрах, характеризующих энергию примесных атомов в жидкой и твердой зернограничной фазах (Ψ_i^L, Ψ_i^b) и заданной начальной концентрации примесных атомов C_0 , получить температурные зависимости параметров структуры границы (n_L , y, R, r_L , C_0^L and C_i^b) в условиях локального плавления.

Результаты численного анализа параметров структуры границы

Численный расчет проведен для модельного сплава со следующими типичными значениями параметров: $qa^3 \sim 1.5kT_m, \ \delta_0 \sim 2a, \ \gamma_b a^2 \sim 0.3kT_m, \ \gamma_{L/S}a^2 \sim 0.2kT_m.$ Как показывает анализ, температурная зависимость радиуса жидких капель r_L (рис. 2, *a*) и температурная зависимость числа жидких капель n_L на единицу площади границы (рис. 3, а) имеют немонотонный характер при фиксированном значении $\Delta \Psi = 1kT_m$. При фиксированном же значении $C_0 a^3 = 0.1$ характер температурных зависимостей r_L и n_L определяется величиной $\Delta \Psi$ (рис. 2, *b* и 3, *b*). При малых $\Delta \Psi$ (1*kT_m* и 1.5*kT_m*) зависимости также имеют немонотонный характер. При больших $\Delta \Psi$ r_L и n_L монотонно изменяются во всем исследованном интервале температур. Между тем при всех исследованных значениях $C_0 a^3$ и $\Delta \Psi$ доля жидкой фазы (рис. 4) всегда монотонно возрастает с ростом температуры. Анализ показывает, что температура, при

Рис. 3. Температурная зависимость числа жидких капель на единицу площади границы. a — значения $C'_0($ цифры у кривых), b — значения $\Delta \Psi'$ (цифры у кривых).

Рис. 4. Температурная зависимость поверхностной доли жидкой фазы: a — то же, что и на рис. 2, a; b — то же, что и на рис. 2, b.

которой возникает жидкая фаза, существенно зависит от начальной концентрации примеси в границе и ее энергетических характеристик. Температура начала локального плавления То тем выше, чем ниже начальная концентрация примеси. Интересно отметить, что в модели начало локального плавления (появление устойчивых жидких капель) характеризуется конечной величиной доли жидкой фазы. В области температур T < T_{i0} не существует устойчивых жидких капель и жидкая фаза может существовать только за счет термических флуктуаций. Следует отметить, что при $\alpha_L \sim 0.6$ следует ожидать перекрытия участков жидкой фазы и рассматриваемая модель становится неприменимой. В этом случае структуру границы зерна следует рассматривать как жидкий слой, содержащий островки твердой фазы [9]. Вариация параметров материала $\gamma_b a^2$ и qa^3 не меняет характера зависимости параметров границы от температуры, однако существенно влияет на температуру начала плавления: плавление наступает раньше в материалах с меньшими значениями величины удельной теплоты плавления qa^3 и бо́льшими значениями поверхностной энергии границы $\gamma_b a^2$.

Выводы

Построена модель, описывающая начальные стадии локального плавления границ зерен, содержащих сегрегации примесных элементов.

Получена система уравнений, описывающая зависимости параметров жидкотвердой границы (геометрию, размеры и число жидких участков, концентрацию примеси в жидких и твердых участках границы) от температуры, исходной концентрации и термодинамических характеристик атомов примеси.

Численный анализ предложенной модели показывает, что начало локального плавления (появление устойчивых жидких капель) характеризуется конечной величиной доли жидкой фазы. Доля жидкой фазы всегда монотонно увеличивается с повышением температуры, в то время как характер температурных зависимостей размера и числа жидких участков может изменяться в зависимости от исходной концентрации и термодинамических характеристик примеси.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 00-02-16546).

Список литературы

- Nieh T.G., Henshall C.A., Wadsworth J. // Scripta Metall. 1985. Vol. 19. P. 1375–1379.
- [2] Higashi K. // Mater. Sci. Forum. 1994. Vol. 170–172. P. 131– 134.
- [3] Koike L., Mabuchi M., Higashi K. // Acta Metall. Mater. 1995. Vol. 43. N 1. P. 199–206.
- [4] Higashi K., Mabuchi M., Langdon T.G. // ISIJ International. 1996. Vol. 36. N 12. P. 1423–1238.
- [5] Higashi K., Nieh T.G., Wadsworth J. // Acta Metall. Mater. 1995. Vol. 43. N 9. P. 3275–3282.
- [6] Higashi K. // Mater. Sci. Forum. 1996. Vol. 243–245. P. 267– 276.
- [7] Mabuchi M., Iwasaki H., Higashi K. // Acta Mater. 1998.
 Vol. 46. N 15. P. 5335–5343.
- [8] Perevezentsev V.N. // Mater. Sci. Forum. 1997. Vol. 243–245.
 P. 297–302.
- [9] Perevezentsev V.N., Higashi K., Svirina J.V. // Mater. Sci. Forum. 1999. Vol. 304–306. P. 217–224.
- [10] Perevezentsev V.N., Langdon T.G., Svirina J.V. // Proc. Intern. Conf. "Current Status of Theory and Practice of Superplasticity in Materials". Ufa, 2000. P. 21–27.