Слабая антилокализация и спин-орбитальное взаимодействие в квантовой яме $In_{0.53}Ga_{0.47}As/InP$ в режиме замороженной фотопроводимости

© Д.Д. Быканов[¶], С.В. Новиков, Т.А. Полянская, И.Г. Савельев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 10 июня 2002 г. Принята к печати 17 июня 2002 г.)

Исследовано квантовое магнитосопротивление двумерного электронного газа в слабом магнитном поле на гетерогранице $In_{0.53}Ga_{0.46}As/InP$ в режиме замороженной фотопроводимости. Знакопеременный характер зависимостей магнитосопротивления от магнитного поля свидетельствует о влиянии спин-орбитального взаимодействия на проводимость квантовой ямы. Показано, что основным вкладом в величину частоты спин-орбитального рассеяния $1/\tau_{so}$ является механизм, определяемый встроенным на гетерогранице электрическим полем, — линейным по волновому вектору электрона механизмом Рашбы. Полученные данные позволяют на основе существующих теорий оценить параметры спин-орбитального расщепления энергетического спектра $\alpha=(84\pm10)\,{\rm Å}^2$ (по механизму Рашбы) и $\gamma=(73\pm5)\,{\rm эB}\cdot{\rm Å}^3$ (по механизму Дьяконова–Переля и Дрессельхауза).

1. Введение

Как известно, в полупроводниках и полупроводниковых структурах с двумерным электронным газом (2DEG) классическое (лоренцовское) магнитосопротивление отсутствует при низких (гелиевых) температурах. На изоляторной стороне перехода металла-изолятор в области низких температур вместо классического магнитосопротивления наблюдают экспоненциально растущее с магнитным полем магнитосопротивление, обусловленное спиновой перестройкой зон Хаббарда [1], либо сжатием волновых функций электронов [2]. На металлической стороне перехода отсутствие лоренцовского магнитосопротивления связано с вырождением электронного газа [3]. Вместо этого в слабом магнитном поле при $\omega_c \tau \ll 1$ наблюдается квантовое отрицательное магнитосопротивление (ОМС). Оно обусловлено подавлением эффекта слабой локализации магнитным полем и соответственно возрастанием проводимости [4]. В приведенных выше неравенствах: ω_c — циклотронная частота, τ — транспортное время (время релаксации импульса электрона). В более сильном магнитном поле проявляется положительное квантовое магнитосопротивление, обусловленное другим типом квантовых поправок к проводимости. Это поправки, связанные с модифицированным электрон-электронным взаимодействием, характерным для проводников с разупорядоченным электронным газом [4–7]. При $\omega_c \tau \gg 1$ начинаются осцилляции Шубникова-де-Гааза.

Уменьшение проводимости в отсутствие магнитного поля (слабая локализация) вызывается интерференцией волновых функций электронов, прошедших один и тот же путь в прямом и обратном направлениях. Такая интерференция зависит от общего спина J двух электронных волн. При спин-орбитальном (CO) взаимодей-

ствии только интерференция находящихся в триплетном состоянии волн с J=1 дает эффект слабой локализации, т.е. уменьшает проводимость. Синглетное состояние интерферирующих волн с общим числом J=0 приводит к увеличениию проводимости (эффект антилокализации). Соответственно подавление магнитным полем интерференции волн с J=1 увеличивает проводимость (эффект OMC), а подавление интерференции волн с общим спином J=0 — уменьшает. В последнем случае происходит подавление слабой антилокализации, что приводит к положительному магнитосопротивлению (ПМС).

В первых работах по теории слабой локализации и антилокализации в качестве параметров, определяющих зависимости магнитосопротивления от магнитного поля, рассматривались времена сбоя фазы волновой функции электрона (phase-breaking time, dephasing time) τ_{ω} и $\tau_{\rm so}$. Первое время (τ_{φ}) — из-за сбоя фазы за счет неупругого рассеяния типа электрон-электронного или электронфононного взаимодействий. Второе (τ_{so}) — из-за сбоя фазы за счет спин-орбитального рассеяния электронов. Предполагалось, что au_{so} определяется только одним механизмом СО взаимодействия. В качестве процесса, определяющего время $\tau_{\rm so}$, рассматривался либо механизм спиновой релаксации Эллиота-Яфета [8], либо — Дьяконова-Переля, возникающий в полупроводниках без центра инверсии (часто называемый механизмом Дрессельхауза) [4,9]. Впоследствии появились теоретические разработки, показавшие, что при действии нескольких механизмов СО взаимодействия они влияют различным образом на зависимость проводимости 2DEG от магнитного поля [10,11], и был предложен новый тип зависимости, учитывающий это различное влияние. В результате путем анализа экспериментальных зависимостей оказалось возможным оценивать раздельно вклады различных механизмов СО рассеяния.

5* 1475

[¶] E-mail: dbyk@mail.ioffe.ru

В данной работе мы представляем результаты исследования магнитосопротивления 2DEG на гетерогранице $In_{0.53}Ga_{0.47}As/InP$ при заполнении одной подзоны размерного квантования в режиме замороженной проводимости и сравнение этих данных с теориями [10,11]. Ранее подобное экспериментальное исследование было выполнено для 2DEG на гетерогранице $GaAs/In_{0.15}Ga_{0.85}As$ и на образцах, находящихся в равновесном состоянии (в темноте) [11].

2. Теоретические предпосылки

Теория квантовых поправок справедлива для слабо разупорядоченного электронного газа при выполнении условия

$$k_{\rm F}l > 1,\tag{1}$$

где $k_{\rm F}$ — волновой вектор электрона на уровне Ферми, l — длина свободного пробега. Теоретические зависимости магнитопроводимости от магнитного поля справедливы только до величины магнитного поля, соответствующей неравенству

$$L_B < l, (1a)$$

где $L_B = (\hbar c/2eB)^{1/2}$ — магнитная длина.

Возникновение знакопеременной зависимости квантового магнитосопротивления можно проиллюстрировать, используя теоретическую зависимость магнитопроводимости (magnetoconductivity) 2DEG от магнитного поля из работы [8]:

$$\frac{\sigma(B) - \sigma(0)}{G_0} = \frac{\Delta\sigma(B)}{G_0} = f_2 \left(\frac{B}{H_s + H_{\varphi}}\right) + \frac{1}{2} f_2 \left(\frac{B}{2H_s + H_{\varphi}}\right) - \frac{1}{2} (1 + \beta) f_2 \left(\frac{B}{H_{\varphi}}\right), (2)$$

где B — магнитное поле, $G_0 = e^2/2\pi\hbar$, β — коэффициент, определяющий величину поправки Маки-Томпсона [12]:

$$\Delta \sigma_{\rm MT}(B) = -\beta G_0 f_2 \left(\frac{B}{H_{\varphi}}\right); \tag{3}$$

функция $f_2(x)$ определяется диаграмма-функцией $\Psi(z)$:

$$f_2(x) = \Psi\left(\frac{1}{2} + \frac{1}{x}\right) + \ln x.$$

Параметр H_{φ} связан со временем сбоя фазы τ_{φ} ;

$$H_{\varphi} = \frac{\hbar c}{4eD\tau_{\varphi}},\tag{4}$$

параметр H_s — со временем релаксации СО взаимодействий τ_{so} :

$$H_s = \frac{\hbar c}{4eD\tau_{so}}. (5)$$

Если частота СО рассеяния $1/\tau_{so}$ много меньше частоты $1/\tau_{\varphi}$, то $2/H_s+H_{\varphi}\approx H_{\varphi}$, и, складывая члены в правой части (2), получаем

$$\frac{\Delta\sigma(B)}{G_0} = (1-\beta)f_2\left(\frac{B}{H_{\varphi_{\varphi}}}\right) > 0,$$

т.е. квантовая поправка к проводимости положительна и наблюдается эффект ОМС, определяемый временем сбоя фазы.

В дальнейшем, как и в большинстве теоретических [10,11] и экспериментальных исследований, мы не будем учитывать поправку Маки–Томпсона (3), считая $\beta \to 0$.

Для полупроводников с сильным спин-орбитальным взаимодействием электронов, как например полупроводники A^{IV} и $A^{III}B^V$ p-типа, а также для квантовых ям с дырочной проводимостью на их основе справедливо обратное неравенство $1/\tau_{so}\gg 1/\tau_{\phi}$, т.е.

$$H_s \ll H_{\varphi}$$
 (6)

и основную роль играет последний член в правой части (2). Квантовая поправка к проводимости становится отрицательной, т. е. наблюдается ПМС. Этот эффект, как и ОМС, определяется только величиной и температурной зависимостью времени τ_{φ} :

$$\frac{\Delta\sigma(B)}{G_0} = -\frac{1}{2}f_2\left(\frac{B}{H_{\omega}}\right) < 0. \tag{7}$$

Если частоты $1/\tau_{\rm so}$ и $1/\tau_{\phi}$ сравнимы по величине, то

$$H_s \gtrsim H_{\varphi}$$
 (8)

и в слабом магнитном поле также основную роль играет последний член в правой части (2) с бо́льшим значением аргумента, обеспечивая эффект ПМС. По мере возрастания магнитного поля и насыщения этой зависимости начинают превалировать первые слагаемые и магнитопроводимость изменяет знак, а магнитосопротивление становится отрицательным. Такое знакопеременное магнитосопротивление удается наблюдать в структурах на основе $A^{III}B^V$ с двумерным элекронным газом (см., например, [9,11,13]). Оно проявляется в виде пика положительного магнитосопротивления в области слабого магнитного поля с последующей сменой знака и переходом в ОМС.

Как было показано в работе [10], вид зависимости (2) должен быть изменен, если в гамильтониане для спинового расщепления зоны проводимости

$$H = \frac{k^2}{2m^*} + (\boldsymbol{\sigma}\Omega) \tag{9}$$

присутствуют линейные по k члены, описывающие СО взаимодействие (рассматривалась плоскость гетерограницы [100] в $A^{III}B^V$). В выражении (9) $\hbar=1$, $k^2=k_x^2+k_y^2$, $\boldsymbol{\sigma}=(\sigma_x,\sigma_y)$, $\boldsymbol{\Omega}=(\Omega_x,\Omega_y)$ — двумерные вектора с компонентами в плоскости квантовой ямы;

 σ_i — компоненты матрицы Паули. Вектор $2\Omega/\hbar$ имеет физический смысл вектора прецесии: его длина равна частоте прецесии спина и его направление определяет ось прецесии. Расщепление энергии по спину равно 2Ω .

В рассматриваемом случае расчет времени релаксации спина производится как

$$\frac{1}{\tau_{\text{so}}} = 2(\Omega_1^2 \tau_1 + \Omega_{1R}^2 \tau_1 + \Omega_3^2 \tau_3), \tag{10}$$

где

$$\frac{1}{\tau_n} = \int W(\theta)(1 - \cos n\theta)d\theta, \quad n = 1, 3;$$

$$\Omega_1 = \gamma k \left(\langle k_z^2 \rangle - \frac{1}{4} k^2 \right) \tag{11}$$

— член, линейный по волновому вектору (механизм Дьяконова—Переля) [14]. Здесь $\langle k_z^2 \rangle$ — средняя величина квадрата волнового вектора в направлении, перпендикулярном плоскости 2DEG.

$$\Omega_3 = \gamma \, \frac{k^3}{4} \tag{12}$$

— член кубический по волновому вектору в плоскости гетерограницы (механизм Дрессельхауза). В дальнейшем будем обозначать $\tau_1 = \tau$ — транспортное время релаксации. Следует отметить, что выражение для магнитопроводимости (2) справедливо, если в СО рассеянии присутствует только вклад Ω_3 .

Кроме того, в асимметричной квантовой яме возникает дополнительный член в гамильтониане, также линейный по волновому вектору электрона

$$\Omega_{1R} = \alpha F k \tag{13}$$

(F — электрическое поле на гетерогранице), предложенный Рашбой [15]. Коэффициенты α и γ являются константами, характеризующими энергетический спектр полупроводника со слоем 2DEG.

Теоретический анализ [10] показал, что для учета линейных членов при расчете квантовых поправок, связанных со слабой локализацией, неправильно использовать просто суммарное время для релаксации спина в выражении (2). В этой работе представлено аналитическое выражение для магнитопроводимости:

$$\frac{\Delta\sigma(B)}{G_0} = -\frac{1}{a_0} - \frac{2a_0 + 1 + \frac{H_s}{B}}{a_1 \left(a_0 + \frac{H_s}{B}\right) - 2\frac{H_{s1}}{B}} + \sum_{n=0}^{\infty} \left(\frac{3}{n} - \frac{3a_n^2 + 2a_n \frac{H_s}{B} - 1 - 2(2n+1)\frac{H_{s1}}{B}}{\left(a_n + \frac{H_s}{B}\right)a_{n-1}a_{n+1} - 2((2n+1)a_n - 1)\frac{H_{s1}}{B}}\right)$$

$$-2\ln\frac{H_{\rm tr}}{B} - \Psi\left(\frac{1}{2} + \frac{H_{\varphi}}{B}\right) - 3C,\tag{14}$$

где $a_n=n+\frac{1}{2}+\frac{H_\varphi}{B}+\frac{H_s}{B},\ C$ — константа Эйлера. В зависимости (14) в отличие от выражения (2) есть

два характерных магнитных поля для описания спинорбитального рассеяния: кроме H_s , определяемого суммарной величиной времени релаксации спина τ_{so} (10):

$$H_s = \frac{2}{4\hbar eD} \left(\Omega_1^2 \tau + \Omega_3^2 \tau_3 + \Omega_{1R}^2 \tau \right), \tag{15}$$

возникает дополнительный параметр H_s , который определяется наибольшим из членов (11) или (13), линейными по волновому вектору

$$H_{s1} = \frac{2\tau \, \max\{\Omega_{1}^{2}, \, \Omega_{1R}^{2}\}}{4\hbar e D}.$$
 (16)

Условие (1a) для применимости всех теоретических зависимостей магнитопроводимости от магнитного поля для 2DEG может быть записано в виде

$$B < H_{\rm tr} = \frac{\hbar c}{4eD\tau}.\tag{16a}$$

3. Образцы и методика эксперимента

Селективно легированные гетероструктуры In_{0.53}Ga_{0.47}As/InP изготавливались методом жидкофазной эпитаксии [16]. На подложке из полуизолирующего InP, легированного железом, выращивался буферный слой фосфида индия р-типа, легированного самарием (с концентрацией дырок $p \approx 10^{15}\,\mathrm{cm}^{-3}$ при комнатной температуре) толщиной порядка 1.5 мкм, затем слой InP п-типа (источник электронов в квантовой яме) толщиной 0.5-0.6 мкм, легированный Si $(N_{\rm Si} \approx (2-3) \cdot 10^{17} \, {\rm cm}^{-3})$, и слой твердого раствора $In_{0.53}Ga_{0.47}As\ p$ -типа толщиной 4—5 мкм (с концентрацией дырок $p \approx 10^{15} \, \text{см}^{-3}$). Методом фотолитографии из структур изготавливались образцы для гальваномагнитных измерений в виде двойных холловских крестов с 6 контактами. На контактные площадки образцов были вплавлены капли In в вакууме при 450°C, что обеспечивало омический контакт к слою 2DEG. Концентрация электронов в образцах варьировалась импульсами света от GaAs-светодиода с помощью эффекта замороженной фотопроводимости (неравновесного, но квазистационарного процесса), который сопровождается перераспределением зарядов и уменьшением встроенного электрического поля на

Таблица 1. Характеристики исследованных образцов в равновесном состоянии при $T=1.8\,\mathrm{K}$

Образец	<i>R</i> , Ом	n_s , 10^{11}cm^{-2}	μ , $10^4 \text{cm}^2 / (\text{B} \cdot \text{c})$	τ, пс	<i>H</i> _{tr} , Гс	$k_{ m F} l$
1	552	2.93	3.86	0.90	28	47
2	649	4.06	2.37	0.55	53	40
3	717	3.38	2.573	0.60	54	36

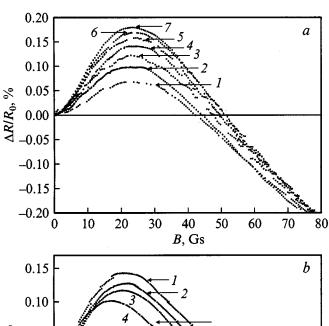
Примечание. R — сопротивление на квадрат пленки, n_s и μ — холловские концентрация и подвижность электронов, τ — время упругого рассеяния, $H_{\rm tr}$ — параметр (16a), $k_{\rm F}l$ — параметр (1).

гетерогранице [17]. В диапазоне изменения концентрации в образцах уровень химического потенциала $\varepsilon_{\rm F}$ находился в 1-й подзоне размерного квантования.

Измерения были выполнены в диапазоне $T=1.8-4.2\,\mathrm{K}$ на образцах с исходной концентрацией 2DEG от $n_s=2.9\cdot 10^{11}$ до $n_s=4.1\cdot 10^{11}\,\mathrm{cm}^{-2}$. Методика гальваномагнитных измерений описана в работе [18]. Параметры двумерного электронного газа при температуре $T=1.8\,\mathrm{K}$ приведены в табл. 1.

4. Результаты эксперимента и их анализ

В слабом магнитном поле для всех состояний образцов (как в темноте, так и при освещении) наблюдались зависимости знакопеременного магнитосопротивления от магнитного поля с максимумом положительного магнитосопротивления при величине магнитного по-



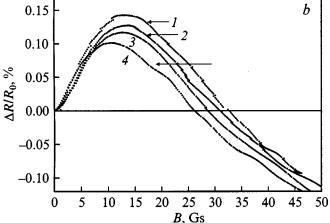


Рис. 1. Зависимости магнитосопротивления $\Delta R/R_0$ от магнитного поля B для образцов с номерами (см. табл. 1): a-3, b-1. На рис. a- при изменении температуры T, К: I-4.21, 2-3.74, 3-3.27, 4-2.78, 5-2.45, 6-1.99, 7-1.81. На рис. b- при изменении концентрации электронов n_s , 10^{11} см $^{-3}$: I-2.93, 2-3.08, 3-3.103, 4-3.202.

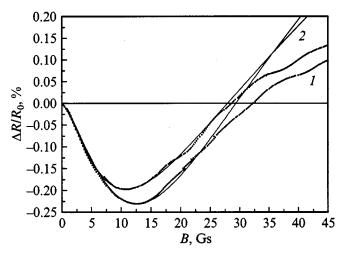


Рис. 2. Зависимости магнитопроводимости $\Delta \sigma/G_0$ от магнитного поля B для образца 1 (см. табл. 1) при концентрации электронов n_s , 10^{11} см $^{-3}$: I — 3.14, 2 — 3.20. Сплошные линии — подогнанные теоретические зависимости (14).

ля B<50 Гс. На рис. 1,a,b показаны примеры такого типа зависимостей магнитосопротивления от магнитного поля $[R(B)-R(0)]/R(0)=\Delta R/R_0$. Перерасчет $\Delta R/R_0=f(B)$ в зависимость магнитопроводимости от магнитного поля $[\sigma(B)-\sigma(0)]=\Delta\sigma(B)$, нормированной на величину $G_0=e^2/2\pi\hbar$, производился следующим образом:

$$\frac{\sigma(B) - \sigma(0)}{G_0} = \frac{\Delta\sigma(B)}{G_0} = -\frac{\sigma_0}{G_0} \left[\frac{\Delta R(B)}{R_0} + \left(\frac{\sigma_{xy}(B)}{\sigma_{xx}(B)} \right)^2 \right],$$

где

$$\left(\frac{\sigma_{xy}(B)}{\sigma_{xx}(B)}\right)^2 \approx (\mu H)^2,$$

 μ — холловская подвижность. Предполагалось, что в слабом магнитном поле $(\mu H)^2 \ll 1$, но может быть сравнимо по величине со значениями $\Delta R(B)/R_0$. Получаемые таким образом зависимости (рис. 2) сопоставлялись с теоретической (14) для нахождения параметров H_{φ} (4), H_s (15) и H_{s1} (16).

На рис. 1, *а* представлены данные для одного из образцов в исходном состоянии при изменении температуры; на рис. 1, *b* и рис. 2 — при разной концентрации 2DEG, варьируемой импульсами подсветки образца с помощью GaAs-диода. На рис. 2 сплошными линиями показаны также теоретические зависимости (14), наиболее хорошо описывающие экспериментальные данные.

Найденные значения H_{φ} использовались для нахождения времени сбоя фазы τ_{φ} в соответствии с соотношением (4). Коэффициент диффузии вычислялся как

$$D = \frac{\sigma}{e^2 \nu} = \frac{\hbar}{m^* 2\pi G_0 R_0}.$$

Здесь ν — плотность состояний 2DEG. Экспериментальные значения частоты сбоя $1/\tau_{\phi}$ показаны точками на

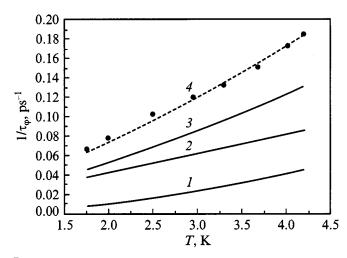


Рис. 3. Зависимости частоты сбоя фазы $1/\tau_{\varphi}$ от температуры для образца 3 в равновесном состоянии. Экспериментальные значения (точки) получены в результате сопоставления зависимостей $\Delta\sigma(B)/G_0$ с выражением (14). Теоретические зависимости: $I=1/\tau_p^{\rm ee}$ (18), $2=1/\tau_{\rm d}^{\rm ee}$ (17), $3=1/\tau_{\varphi}^{\rm ee}$ (19), $4=1.5/\tau_{\varphi}^{\rm ee}$.

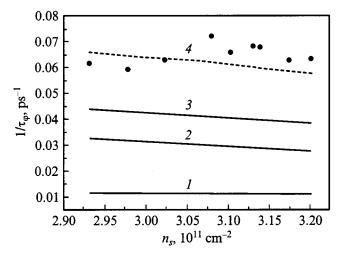


Рис. 4. Зависимости частоты сбоя фазы $1/\tau_{\phi}$ от концентрации электронов для образца I в режиме замороженной проводимости. Обозначения те же, что и на рис. 3.

рис. 3 — в зависимости от температуры и на рис. 4 — от концентрации электронов.

Перед сравнением этих данных с теоретическими отметим, что в более ранних наших работах, например [19], было показано, что релаксация фазы волновой функции в основной подзоне в гетероструктурах на основе $A^{\rm III}B^{\rm V}$ при гелиевых температурах определяется электрон-электронным взаимодействием. Первый тип такого взаимодействия, характерный для слабо разупорядоченных проводников, определяется так называемым найквистовским временем [20]:

$$\frac{\hbar}{\tau_{\rm d}^{\rm ee}} = \frac{2\pi G_0}{\sigma} T \ln \left(\frac{\sigma}{2\pi G_0} \right). \tag{17}$$

Другой тип взаимодействия характерен для идеальной ферми-жидкости. В 2DEG соответствующее время имеет вид [21]

$$\frac{\hbar}{\tau_{\rm p}^{\rm ee}} = \frac{\pi T^2}{2\varepsilon_{\rm F}} \, \ln \left(\frac{\varepsilon_{\rm F}}{T_M} \right), \quad T_M = \max \left(\frac{\hbar}{\tau}, T \right).$$

При условии $T < \hbar/\tau$, $T_M = \hbar/\tau$. Тогда

$$\frac{\hbar}{\tau_{\rm p}^{\rm ee}} = \frac{\pi T^2}{2\varepsilon_{\rm F}} \ln\left(\frac{\sigma}{2\pi G_0}\right). \tag{18}$$

Суммарная частота электрон-электронного взаимодействия вычисляется на основе измеренных значений проводимости образца σ и концентрации электронов n_s как

$$\frac{1}{\tau_{\varphi}^{\text{ee}}} = \frac{1}{\tau_{\text{d}}^{\text{ee}}} + \frac{1}{\tau_{\text{p}}^{\text{ee}}}.$$
 (19)

На тех же рис. 3 и 4 приведены теоретические зависимости времен $1/\tau^{\rm ee}$ (17)–(19) от температуры и концентрации электронов. Можно видеть качественное совпадение расчетных $1/\tau_{\phi}^{\rm ee}$ и экспериментальных $1/\tau_{\phi}$ зависимостей от n_s и T. Количественное расхождение численных значений τ_{ϕ} в пределах 50%, как и в нашем случае (см. штриховые кривые 4 на рис. 3 и 4), достаточно часто наблюдается при сравнении экспериментальных и теоретических значений (см. [6], разд. 4.2).

Сбой фазы волновой функции электронов может быть связан и с неупругим электрон-фононным рассеянием. Для теоретической оценки соответствующей частоты мы использовали время релаксации средней энергии электрона при рассеянии на деформационном (DA) и пьезоэлектрическом (РА) потенциале акустических фононов. Соответствующие выражения (на основе теории Карпуса [22]) приведены, например, в работе [23] (разд. 4.3.2). В результате оказалось, что для всех образцов частота электрон-фононных взаимодействий при DA рассеянии изменяется от $\sim 0.004\,\mathrm{nc^{-1}}$ при $T=1.8\,\mathrm{K}$ до $\sim 0.01\,{\rm nc}^{-1}$ при $T=4.2\,{\rm K}$. Частота РА электронфононного взаимодействия еще на порядок меньше. Следовательно, эти механизмы неупругого рассеяния практически не дают вклада во время сбоя фазы в исследованных диапазонах температуры и концентрации

Таким образом, при заполнении нижней подзоны размерного квантования в режиме замороженной фотопроводимости (под воздействием импульсов света) время сбоя фазы τ_{φ} определяется, как и в стационарном случае (рис. 3), временем электрон-электронного взаимодействия (19).

На рис. 5,6 (точки 1 и 2) представлены значения $H_s(n_s)$, $H_s(T)$ и $H_{s1}(n_s)$, $H_{s1}(T)$, определенные путем сопоставления экспериментальных зависимостей магнитопроводимости от магнитного поля с выражением (14).

Концентрационные зависимости этих параметров в режиме замороженной проводимости (рис. 5, a, b) качественно подобны тем, что наблюдались в работах [18,24]

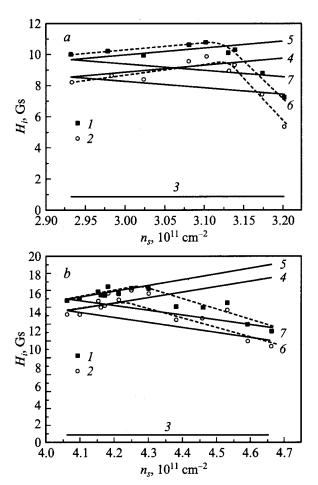


Рис. 5. Параметры спин-орбитального взаимодействия в зависимости от концентрации 2DEG в режиме замороженной проводимости для образцов 1 (a) и 2 (b) (см. табл. 1). Экспериментальные значения (точки: $I-H_s$ (15), $2-H_{s1}$ (16)) получены в результате сопоставления зависимостей $\Delta\sigma(B)/G_0$ с выражением (14). Штриховые кривые проведены на глаз через экспериментальные значения. Теоретические зависимости: $3-H_{s3D}$ (23), $4-H_{s1D}$ (20), $5-H_{s1D}+H_{s3D}+H_{s1R}$, $6-H_{s1R}^{pp}$ (25), $7-H_{s1D}+H_{s3D}+H_{s1R}^{pp}$.

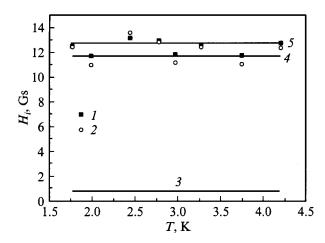


Рис. 6. Параметры спин-орбитального взаимодействия в зависимости от температуры для образца 3 в равновесном состоянии. Обозначения 1-5 такие же, как и на рис. 5.

для величин H_s . Однако следует отметить, что данные, полученные в [18,24] для зависимостей $H_s(n_s)$ и $H_{\varphi}(n_s)$ в 1-й подзоне размерного квантования, имеют только качественный характер, поскольку обрабатывались по теоретической зависимости (2), справедливой, вообще говоря, только для механизма СО рассеяния (12). Более детальные измерения и анализ на основе теории (14), представленные здесь, показали, что уменьшение параметров СО взаимодействия H_s и H_{s1} с ростом концентрации электронов наступает не сразу: в начале воздействия светом эти параметры продолжают немного возрастать с увеличением n_s , а затем убывают.

Температурные зависимости (рис. 6) измерялись на образце, находящемся в равновесном состоянии. Как и следовало ожидать, параметры, характеризующие СО рассеяние, H_s и H_{s1} не зависят от температуры (в пределах погрешности эксперимента).

Как видно из рис. 5, 6, экспериментальные значения H_{s1} близки по величине к значениям H_s . Это означает, что в сумме (15) последнее слагаемое играет основную роль, т. е. экспериментальные значения H_{s1} (16) определяются механизмом Рашбы:

$$H_{s1} = \frac{2\tau \,\Omega_{1R}^2}{4\hbar e D}.$$

Для сравнения с теорией расчетные значения параметров H_s (15) и H_{s1} (16) вычислялись следующим образом. Для нахождения величины $\langle k_z^2 \rangle$ использовалось выражение [25]

$$\langle k_z^2
angle = \left\lceil rac{48\pi m^* e^2 \left(N_0 + rac{11}{32} n_s
ight)}{\chi \hbar^2}
ight
ceil^{2/3}.$$

Для вычислений принимались значения диэлектрической проницаемости $\chi=14.1$, эффективной массы электрона $m^*=0.0141m_0$, концентрации остаточной примеси $N_0=5\cdot 10^{10}\,{\rm cm}^{-2}$. В результате для расчета величины H_{s1D} , определяемой Ω_1^2 (11), получаем

$$H_{s1D} = 1.132 \cdot 10^7 \gamma^2 \left(\frac{m^*}{m_0}\right)^2$$

$$\times \left\{ 0.0233 \left[\frac{m^*}{m_0} \frac{1}{\chi} \frac{\left(N_0 + \frac{11}{32} n_s \right)}{10^{12}} \right]^{2/3} - 1.57 \cdot 10^{-4} \frac{n_s}{10^{12}} \right\}^2. \tag{20}$$

Здесь и далее использована подстановка $k=k_{\rm F}=(2\pi n_{\rm s})^{1/2}$, единицы измерения концентрации в (20) и далее — см $^{-2}$, коэффициента γ — Å $^3\cdot$ эВ.

Другой член, линейный по k, определяемый Ω^2_{1R} (13) и характерный для асимметричной квантовой ямы, можно записать в виде

$$H_{s1R} = 3710\alpha^2 \left(\frac{m^*}{m_0}\right)^2 \frac{1}{\chi^2} \left(\frac{\frac{1}{2}n_s + N_0}{10^{12}}\right)^2.$$
 (21)

Единицы измерения коэффициента α — \mathring{A}^2 . Здесь использовано выражение для среднего электрического

поля квановой ямы [25]:

$$F = \frac{4\pi e \left(N_0 + \frac{1}{2} n_s\right)}{\chi}.$$
 (22)

Кубический по волновому вектору k член Дрессельхауза, определяемый Ω_3^2 (12), дает значение для параметра СО рассеяния

$$H_{s3D} = 0.283 \gamma^2 \frac{\tau_3}{\tau} \left(\frac{m^*}{m_0}\right)^2 \left(\frac{n_s}{10^{12}}\right)^2.$$
 (23)

Далее предполагали, что $au_3/ au=1$.

Расчетные значения параметров (20), (21) представлены на рис. 5,6 кривыми 3, 4 соответственно. Кривые 5 показывают вычисленные зависимости величины $H_s = H_{s1D} + H_{s3D} + H_{s1R}$ (15) от концентрации n_s . Для расчета использованы значения констант $\gamma = (73 \pm 5) \text{Å}^3 \cdot 9 \text{В и } \alpha = (84 \pm 10) \text{Å}^2$.

На рис. 5, a, b приведены также расчеты параметров H_{s1R} в неравновесном режиме (H_{s1R}^{pp}) . Эффект замороженной фотопроводимости (persistence photoconductivity) в исследованных структурах связан с разделением носителей встроенным электрическим полем F, захватом дырок остаточными ионизованными акцепторами в слое узкозонного материала $In_{0.53}Ga_{0.46}As$, а также захватом поверхностными состояниями — в случае тонкого верхнего слоя [17]. Это означает, что если освещение системы межзонным светом приводит к увеличению n_s на величину Δn_s , то одновременно на ту же величину уменьшается концентрация N_0 . В результате для среднего поля в состоянии замороженной фотопроводимости можно записать следующее выражение:

$$F = F_0 - \frac{4\pi e}{2\chi} \, \Delta n_s, \tag{24}$$

а для параметра СО рассеяния по механизму Рашбы в режиме замороженной фотопроводимости

$$H_{s1R}^{pp} = 3710\alpha^2 \left(\frac{m^*}{m_0}\right)^2 \frac{1}{\chi^2} \left(\frac{N_0 + n_{s0} - \frac{1}{2}n_s}{10^{12}}\right)^2.$$
 (25)

Здесь обозначено F_0 и n_{s0} — встроенное поле (22) гетероструктуры и концентрация электронов в исходном состоянии, n_s — концентрация электронов в режиме замороженной проводимости. Результаты расчета концентрационных зависимостей H_{s1R}^{pp} (25) показаны на рис. 5, a, b кривыми 6, а суммы $H_{s1D} + H_{s3D} + H_{s1R}^{pp}$ — кривыми 7. Такое вычисление H_{s1R}^{pp} позволяет лишь качественно объяснить поведение найденных экспериментально параметров как $H_{s1} = H_{s1R}^{pp}$, так и $H_s \approx H_{s1R}^{pp}$ в зависимости от концентрации электронов, возрастающей с увеличением количества импульсов освещения образцов (ср. точки 2 с кривыми 6, точки 1 — с кривыми 7 на рис. 5, a, b).

Таблица 2. Значения параметров для GaAs, InAs, $In_{0.15}Ga_{0.85}As$ и $In_{0.53}Ga_{0.47}As$ по результатам $\mathbf{k}\cdot\mathbf{p}$ -модели и экспериментальные

Пара-	Да	нные из	Наши данные			
метры зонной		$\mathbf{k}\cdot\mathbf{p}$		Экспе-	$\mathbf{k} \cdot \mathbf{p}$	Экспе- римент
структуры	GaAs	InAs	In _{0.15} Ga _{0.85} As		$In_{0.53}Ga_{0.47}As$	
E_g , \ni B	1.519	0.42	1.35		0.8215	
Δ , \ni B	0.341	0.38	0.347		0.362	
E_g' , $\ni \mathbf{B}$	2.97	3.97	3.12'		3.49	
Δ^{\prime} , $\ni B$	0.171	0.24	0.181		0.207	
<i>P</i> , эВ · Å	10.49	9.2'	10.29		9.81	
P' , э $\mathbf{B} \cdot \mathring{\mathbf{A}}$	4.78	0.87'	4.20		2.80	
Q , э $\mathrm{B}\cdot\mathrm{\mathring{A}}$	-8.16	-8.33	-8.18		-8.24	
γ , э $\mathbf{B} \cdot \mathbf{\mathring{A}}^3$	27.5	26.9	27.7	24	36	73 ± 5
α, \mathring{A}^2	5.33	116.74	7.2	7.2	25	84 ± 8

Весьма приблизительную оценку констант α и γ можно сделать, используя линейную экстраполяцию приведенных в работе [11] парамеров 3-зонной $\mathbf{k} \cdot \mathbf{p}$ -модели энергетических зон для соединений $\ln_x \mathrm{Ga}_{1-x} \mathrm{As}$ при $x=0,\ 0.15$ и 1 для нахождения значений при x=0.53 (см. табл. 2), а также приведенные в [11] формулы $\mathbf{k} \cdot \mathbf{p}$ -модели:

$$\gamma = -rac{4}{3}rac{PP'Q}{E_g(E_g'+\Delta')}\left(rac{\Delta}{E_g+\Delta} + rac{\Delta'}{E_g'}
ight),$$
 $lpha = rac{2}{3}iggl\{P^2rac{\Delta}{E_g(E_g+\Delta)(E_g+rac{1}{3}\Delta)} + P'^2rac{\Delta'}{E_g'(E_g'+\Delta')(E_g'+rac{2}{3}\Delta')}iggr\}.$

В 3-зонной ${\bf k}\cdot {\bf p}$ -модели принимаются во внимание состояния зоны проводимости Γ_6 с функциями Блоха S, валентная зона $\Gamma_8+\Gamma_7$ с функциями X,Y,Z и более высокая зона $\Gamma_{8c}+\Gamma_{7c}$ с функциями X',Y',Z'. Этим состояниям при k=0 соответствуют $E_{\Gamma_6}=0$, $E_{\Gamma_8}=-E_g, E_{\Gamma_7}=-(E_g+\Delta), E_{\Gamma_{7c}}=-E_g', E_{\Gamma_8c}=-E_g'+\Delta'; P=(i\hbar/m_0)\langle S|p_z|Z\rangle, P'=(i\hbar/m_0)\langle S|p_z|Z'\rangle, Q=(i\hbar/m_0)\langle X|p_z|Z'\rangle$ — межзонные матричные элементы; ${\bf p}=-i\hbar\nabla$.

Линейная экстраполяция зависимости $E_g(x)$ дает значение $E_g=0.94$ эВ (рис. 7, a, светлые точки I). Однако известно экспериментальное значение $E_g=0.8215$ эВ, определенное с большой точностью в работе [26] (рис. 7, a, черные точки 2). Такое небольшое "провисание" зависимости $E_g(x)$ приводит к значительному увеличению коэффициента γ для твердого раствора $In_{0.53}Ga_{0.47}As$ (рис. 7, b). Полученные величины параметров для $In_{0.53}Ga_{0.47}As$ приведены в табл. 2 вместе с данными из работы [11].

В результате для x=0.53 получаем теоретические оценки $\gamma\approx36\,\text{Å}^3\cdot\text{эВ}$ и $\alpha\approx25\,\text{Å}^2$. Эти цифры в 2–3 раза

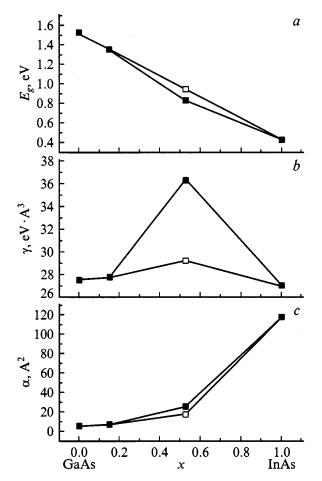


Рис. 7. Зависимости: $a - E_g(x)$, $b - \gamma(x)$ и $c - \alpha(x)$ от содержания индия (x) в твердом растворе $\operatorname{In}_x\operatorname{Ga}_{1-x}\operatorname{As}$ по данным [11] и их линейной экстраполяции (светлые точки). Те же зависимости, но с использованием известного для x = 0.53 значения $E_g = 0.8215$ эВ [26] — черные точки.

отличаются от найденных в результате подгонки зависимости (14) к экспериментальным данным (см. табл. 2). Однако известно, что и другие параметры зонной структуры, кроме E_g , могут нелинейным образом зависеть от состава твердого раствора в середине интервала x=0-1.

В начале этого интервала, для значения x=0.15, линейная экстраполяция во много раз точнее и неудивительно, что расчетные и экспериментальные данные для γ и α в работе [11] практически совпадают. Кроме того, параметры зон вблизи гетерограницы GaAs/In_{0.15}Ga_{0.85}As, исследованной в [11], и InP/In_{0.53}Ga_{0.46}As могут быть различны из-за отличающихся постоянных решетки по обе стороны гетерограницы. И наконец, весьма вероятно, что после многократного использования циклов охлаждение—освещение—нагрев, которым подвергались образцы, структура дефектов на гетерогранице претерпевала существенные изменения, так же как и деформация решетки, вследствие чего изменились и параметры энергетических зон, от которых зависят коэффициенты γ и α .

5. Заключение

Исследовано квантовое магнитосопротивление двумерного электронного газа на гетерогранице $In_{0.53}Ga_{0.46}As/InP$ в режиме замороженной фотопроводимости. Знакопеременный характер магнитосопротивления в слабом магнитном поле до 100 Гс свидетельствует о влиянии спин-орбитального взаимодействия на проводимость квантовой ямы.

Показано, что основным вкладом в величину частоты спин-орбитального рассеяния $1/\tau_{so}$ является механизм, определяемый встроенным на гетерогранице электрическим полем, — линейным по волновому вектору электрона механизмом Рашбы. Полученные данные позволяют на основе существующих теорий оценить параметры спин-орбитального расщепления энергетического спектра $\alpha=(84\pm4)\,\text{Å}^2$ (по механизму Рашбы) и $\gamma=(73\pm3)\,\text{эВ}\cdot\text{Å}^3$ (по механизмам Дьяконова-Переля и Дрессельхауза). Частота сбоя фазы волновой функции электронов определяется суммой частот электрон-электронного взаимодействия, характерных для идеальной и разупорядоченной двумерной ферми-жидкости.

Работа выполнена при частичной поддержке программы Министерства науки и промышленности "Физика твердотельных наноструктур".

Список литературы

- N.V. Agrinskaya, V.I. Kozub, T.A. Polyanskaya. Phys. St. Sol., 218 (1), 68 (2000).
- [2] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [3] A.C. Beer. Galvanomagnetic Effects in Semiconductors. Suppl. 4 to Solid State Physics (Academic Press, N.Y., 1963).
- [4] Б.Л. Альтшулер, А.Г. Аронов, А.И. Ларкин, Д.Е. Хмельницкий. ЖЭТФ, 81 (8), 768 (1981). [Sov. Phys. JETP, 54, 411 (1981)].
- [5] B.L. Altshuler, A.G. Aronov. Electron-Electron Interaction In Disorderd Systems, ed. by A.L. Efros, M. Pollak (North-Holland, Amsterdam, 1985) p. 1 [Modern Problems in Condensed Matter Sciences, v. 10].
- [6] Т.А. Полянская, Ю.В. Шмарцев. ФТП, **23** (1), 3 (1989) [Sov. Phys. Semicond., **23** (1), 1 (1989)].
- [7] A.M. Paalanen, D.C. Tsui, J.C.M. Hwang. Phys. Rev. Lett., 51 (24), 2226 (1983).
- [8] S. Hikami, A.I. Larkin, Y. Nagaoka. Prog. Theor. Phys., 44 (2), 707 (1980).
- [9] P.D. Dresselhaus, C.M. Papavassiliou, R.G. Wheeler, R.N. Sacks. Phys. Rev. Lett., **68** (1), 106 (1992).
- [10] S.V. Iordanskii, Yu.B. Lyanda-Geller, G.E. Pikus. Письма ЖЭТФ, **60** (3), 199 (1994) [JETP Lett., **60**, 206 (1994)].
- [11] W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin– Staszewska, D. Bertho, F. Kobbi, J.L. Robert, G.E. Pikus, F.G. Pikus, S.V. Iordanskii, V. Mosser, K. Zekentes, Yu.B. Lyanda–Geller. Phys. Rev. B, 53, 3912 (1996).
- [12] А.И. Ларкин. Письма ЖЭТФ, 31, 239 (1980) [Sov. Phys. JETP Lett., 31, 219 (1980)].

- [13] Ж.И. Алфёров, А.Т. Гореленок, В.В. Мамутин, Т.А. Полянская, И.Г. Савельев, Ю.В. Шмарцев. ФТП. 18 (11), 1999 (1984) [Sov. Phys. Semicond., 18 (11), 1247 (1984)].
- [14] М.И. Дьяконов, Ю.Ю. Качоровский. ФТП, **20**, 210 (1986) [Sov. Phys. Semicond., **20**, 110 (1986)].
- [15] Yu.L. Bychkov, E.I. Rashba. J. Phys. C, 17, 6093 (1984).
- [16] Л.В. Голубев, А.М. Крешук, С.В. Новиков, Т.А. Полянская, И.Г. Савельев, И.И. Сайдашев. ФТП, 22 (11), 1948 (1988) [Sov. Phys. Semicond., 22 (11), 1238 (1988)].
- [17] Н.А. Берт, В.В. Воробьева, М.В. Воронцова, А.М. Крещук, С.В. Новиков, К.Ю. Погребицкий, И.Г. Савельев, Д.Ж. Сайфидинов, Н.П. Сошников, А.Я. Шик. ФТП, **24** (4), 653 (1990) [Sov. Phys. Semicond., **24** (4), 410 (1990)].
- [18] Д.Д. Быканов, А.М. Крещук, С.В. Новиков, Т.А. Полянская, И.Г. Савельев. ФТП, **32** (9), 1100 (1998) [Semiconductors, **32** (9), 985 (1998)].
- [19] И.Г. Савельев, Т.А. Полянская. ФТП, **22** (10), 1818 (1988) [Sov. Phys. Semicond., **22** (10), 1150 (1988).]
- [20] B.L. Altshuler, A.G. Aronov, D.E. Khmelnitskii. J. Phys. C, 15, 7367 (1982).
- [21] H. Fukuyama, E. Abrahams. Phys. Rev. B, 27 (10), 5976 (1983).
- [22] B. Kapnyc. ΦΤΠ, **22** (3), 439 (1988) [Sov. Phys. Semicond., **22** (3), 268 (1988)].
- [23] И.Л. Дричко, А.М. Дьяконов, В.Д. Каган, А.М. Крешук, Т.А. Полянская и др. ФТП, **31** (11), 1357 (1997) [Semiconductors, **31** (11), 1170 (1997)].
- [24] D.D. Bykanov, A.M. Kreshchuk, S.V. Novikov, T.A. Polyanskaya, I.G. Savel'ev. In: *Proc. 24th Int. Conf. on the Physics of Semiconductors* (Jerusalem, Israel, 1999), ed. by D. Gershenson (World Scientific, 1999) CD-ROM, papers No 0219.
- [25] T. Ando. Rev. Mod. Phys., 54 (2), 437 (1982).
- [26] E. Zelinski, H. Shweizer, K. Sruebel, H. Eisele, G. Weimann. J. Appl. Phys., **59** (6), 2196 (1988).

Редактор Т.А. Полянская

Weak antilocalization and spin-orbit interaction in a In_{0.53}Ga_{0.47}As/InP quantum well in the persistence photoconductivity state

D.D. Bykanov, S.V. Novikov, T.A. Polyanskaya, I.G. Savel'ev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Low-field quantum magnetoresistance of two-dimensional electron gas on the $In_{0.53}Ga_{0.46}As/InP$ interface has been investigated in the persistent photoconductivity state. The sign-changed character magneto-field dependencies of magnetoresistance is an evidence in favour of spin-orbit interaction in quantum well conductivity. It is shown that the main contribution to the value of spin-orbital scattering frequence $1/\tau_{so}$ is made by a mechanism induced by the built-in electrical field on the interface. It is the Rashba mechanism that is linear along the electron wave vector. Data obtained allow us to find the parameters of energy spectrum spin-orbital splitting: $\alpha = (84 \pm 10) \, \text{Å}^2$ (for the Rashba mechanism) and $\gamma = (73 \pm 5) \, \text{eV} \cdot \, \text{Å}^3$ (for the Dyakonov–Perel and Dresselhaus mechanisms).