Проблемы наблюдения методом мессбауэровской спектроскопии на изотопе ⁶⁷Zn процесса бозе-конденсации в полупроводниках

© С.А. Немов, Н.П. Серегин, С.М. Иркаев*

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия *Институт аналитического приборостроения Российской академии наук, 198103 Санкт-Петербург, Россия

(Получена 1 апреля 2002 г. Принята к печати 4 апреля 2002 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопах ${}^{67}Cu({}^{67}Zn)$ и ${}^{67}Ga({}^{67}Zn)$ установлено, что переход в сверхпроводящее состояние приводит к изменению электронной плотности в металлических узлах решеток металлоксидов меди Nd_{1.85}Ce_{0.15}CuO₄, La_{1.85}Sr_{0.15}CuO₄, YBa₂Cu₃O_{6.6}, YBa₂Cu₃O_{6.9}, YBa₂Cu₄O₈, Bi₂Sr₂CaCu₂O₈, Tl₂Ba₂CaCu₂O₈, HgBa₂CuO₄, HgBa₂CaCu₂O₄. Обнаружена зависимость между изменением электронной плотности и температурой перехода кристалла в сверхпроводящее состояние. Ожидаемое изменение электронной плотности на ядрах ${}^{67}Zn$ для материалов с температурой фазового перехода менее 10 K оказывается ничтожным. В связи с этим вряд ли возможно надежное наблюдение изменения электронной плотности с использованием спектроскопии на изотопе ${}^{67}Zn$ для сверхпроводящего перехода в полупроводниках.

Сверхпроводящие свойства полупроводников достаточно хорошо изучены и их максимальная критическая температура T_c достигает значений нескольких десятых долей Кельвина [1]. Необычными сверхпроводящими свойствами обладают полупроводники $A^{IV}B^{VI}$, легированные примесями III группы — Іп и Tl, создающими резонансные уровни на фоне валентной зоны кристаллов [2]. Твердые растворы $Pb_{1-x}Sn_x$ Te ($x \approx 0.5$) с примесью индия обладают максимальной для полупроводников критической температурой, достигающей 4.2 K [3]. Дополнительный интерес к ним связан с тем, что их свойства во многом аналогичны свойствам высокотемпературных сверхпроводников на основе YBaCuO.

Новым направлением в исследовании свойств сверхпроводящих материалов является изучение свойств бозе-конденсата с помощью эффекта Мессбауэра [4]. В общем случае явление сверхпроводимости связано с образованием бозе-конденсата куперовских пар, который описывается единой когерентной волновой функцией, так что распределение электронной плотности в узлах кристаллической решетки сверхпроводника различно при температурах выше и ниже температуры перехода в сверхпроводящее состояние T_c [5]. Мессбауэровская спектроскопия в принципе позволяет обнаружить процесс бозе-конденсации куперовских пар методом измерения температурной зависимости центра тяжести мессбауэровских спектров сверхпроводников (S) при постоянном давлении P [6]:

$$\left(\frac{\delta S}{\delta T}\right)_{P} = \left(\frac{\delta I}{\delta \ln V}\right)_{T} \left(\frac{\delta \ln V}{\delta T}\right)_{P} + \left(\frac{\delta D}{\delta T}\right)_{P} + \left(\frac{\delta I}{\delta T}\right)_{V}.$$
 (1)

Рассмотрим правую часть этого равенства. Первый член представляет зависимость изомерного сдвига *I* от объема *V*. Второй член описывает влияние допплеровского сдвига 2-го порядка *D*. В дебаевском приближении

он имеет вид [6]

$$\left(\frac{\delta D}{\delta T}\right)_{P} = -\frac{3kE_{0}\mathrm{F}(T/\Theta)}{2Mc^{2}},$$
(2)

где k — постоянная Больцмана, E_0 — энергия изомерного перехода, M — масса ядра-зонда, c — скорость света в вакууме, Θ — температура Дебая, $F(T/\Theta)$ — функция Дебая. Наконец, третий член описывает температурную зависимость изомерного сдвига I. Он характеризует изменение электронной плотности на мессбауэровских ядрах

$$I = \alpha \Delta |\Psi(0)|^2.$$
(3)

Здесь $\Delta |\Psi(0)|^2$ — разность релятивистских электронных плотностей на исследуемых ядрах в двух образцах, α — постоянная, зависящая от ядерных параметров используемого изотопа. Именно эффект изменения электронной плотности ожидается при переходе матрицы в сверхпроводящее состояние. Для решения этой задачи необходим выбор подходящего физического зонда.

Однако попытки обнаружить процессы бозе-конденсации методом мессбауэровской спектроскопии на изотопе ¹¹⁹Sn для классического сверхпроводника Nb₃Sn не были успешными [7]: экспериментальная зависимость S(T) удовлетворительно описывалась доплеровским сдвигом 2-го порядка, и не было отмечено особенностей в поведении S(T), которые можно было бы приписать изменению изомерного сдвига. Не обнаружено также аномального изменения величины S в мессбауэровских спектрах примесных атомов ⁵⁷Fe в высокотемпературных сверхпроводниках [8]. Эти факты объясняются малой величиной Δ/G (здесь Δ — максимально достижимая разность изомерных сдвигов мессбауэровских спектров в обычной и сверхпроводящей фазах, G экспериментальная ширина ядерного уровня), которая для случая мессбауэровской спектроскопии на изотопах ⁵⁷Fe и ¹¹⁹Sn не превышает 6.

Очевидно, что для обнаружения бозе-конденсации методом мессбауэровской спектроскопии необходимо использовать зонд, для которого $\Delta/2G \gg 10$. Выбор объектов для исследования должен также учитывать необходимость введения в узлы решетки мессбауэровского зонда. Эти условия могут быть выполнены для мессбауэровского зонда 67 Zn ($\Delta/2G \approx 200$) в решетках металлоксидов меди и халькогенидов свинца. Действительно, при использовании эмиссионного варианта мессбауэровской спектроскопии ⁶⁷Cu(⁶⁷Zn) дочерний изотоп ⁶⁷Zn оказывается в медном узле решетки металлоксидов меди [4]. При использовании же эмиссионного варианта мессбауэровской спектроскопии 67 Ga $({}^{67}$ Zn) дочерний изотоп 67 Zn оказывается в узлах редкоземельного металла металлоксидов меди [4] или в металлической подрешетке халькогенидов свинца [9].

Учитывая отмеченное выше подобие свойств YBaCuO и соединений A^{IV}B^{VI} с резонансными уровнями, экспериментальная проверка высказанных соображений о возможностях мессбауэровской спектроскопии для изучения бозе-конденсации проводилась на образцах YBaCuO.

Мессбауэровские источники готовились путем диффузии радиоактивных безносительных 67 Си и 67 Ga в поликристаллические образцы в вакуумированных кварцевых амплулах при 450°С в течение 2 ч. В качестве контрольных образцов, для которых не наблюдается переход в сверхпроводящее состояние, использовались материалы, полученные путем отжига исходных (сверхпроводящих) образцов на воздухе при 600°С в течение 2 ч. Измерение мессбауэровских спектров проводилось на модернизированном промышленном спектрометре MC-2201 с поглотителем 67 ZnS. Температура поглотителя была 10 ± 1 K, а температура источника могла меняться в интервале от 10±2 до 90±2 K. Типичные зависимости S(T) приведены на рис. 1.

Рис. 1. Температурные зависимости центра тяжести (*S*) мессбауэровских спектров ⁶⁷Zn²⁺ в узлах Cu(1) [1,4], Cu(2) [2,5], а также Y [3,6], измеренные относительно их значений при 90 К: для YBa₂Cu₄O₈ (кривые *1*–3) и YBa₂Cu₄O_x (кривые *4*–6). Сплошной линией показана теоретическая температурная зависимость *S* для случая доплеровского сдвига 2-го порядка при $\Theta = 400$ К.

Рис. 2. Зависимости I_0 и $\Delta |\Psi(0)|^2$ от T_c^{-1} . Точками с цифрами представлены данные для: I - Cu(1) в Nd_{1.85}Ce_{0.15}CuO4, 2 - Cu(1) в La_{1.85}Sr_{0.15}CuO4, 3 - Cu(2) в YBa₂Cu₃O_{6.9}, 4 - Cu(2) в YBa₂Cu₃O_{6.6}, 5 - Cu(2) в YBa₂Cu₄O₈, 6 - Cu(1) в Bi₂Sr₂CaCu₂O₈, 7 - Cu(1) в Tl₂Ba₂CaCu₂O₈, 8 - Cu(1) в HgBa₂CuO₄ и 9 - Cu(1) в HgBa₂CaCu₂O₆. Данные для Nd_{1.85}Ce_{0.15}CuO₄, La_{1.85}Sr_{0.15}CuO₄ и Tl₂Ba₂CaCu₂O₈ взяты из работы [2].

Оказалось, что температурная зависимость центра тяжести спектра S, измеренного относительно его значения при T_c , для всех контрольных образцов в температурном интервале 10–90 К хорошо описывается формулой (2), если использовать дебаевские температуры, полученные из измерений теплоемкости [10–13]. Для сверхпроводящих образцов зависимость S(T) при $T > T_c$ также описывается доплеровским сдвигом 2-го порядка (2), и температуры Дебая остаются неизменными по сравнению с контрольными образцами. Для области температур $T < T_c$ величина S зависит от температуры более резко, чем это следует из формулы (2), и в выражении (1) следует принимать во внимание температурную зависимость изомерного сдвига.

Для описания наблюдавшегося явления введем предельную величину изомерного сдвига I_0 при $T \rightarrow 0$ К, определяемую как разность $I_0 = S_0 - D_0$. Здесь S_0 и D_0 — центр тяжести спектра и доплеровский сдвиг спектра при $T \rightarrow 0$ К соответственно. Изомерный сдвиг мессбауэровских спектров по соотношению (3) непосредственно связан с изменением электронной плотности на ядрах ⁶⁷Zn, причем величина I_0 характеризует электронную плотность, создаваемую бозе-конденсатом в условиях, когда все электроны проводимости образовали куперовские пары. При пересчете I_0 в $\Delta |\psi(0)|^2$ мы использовали величину α , взятую из работы [14].

Величины I_0 зависит от природы узла, в котором локализован мессбауэровский зонд: для решетки YBa₂Cu₃O_{6.9} наибольшая величина I_0 наблюдается для узлов Cu(2) (6.9 мкм/с), значительно меньшая — для узлов Cu(1) (2.9 мкм/с) и минимальная — для узлов Y (1.9 мкм/с).

На рис. 2 приведена зависимость $\Delta |\Psi(0)|^2$ от T_c^{-1} . С ростом T_c величина $\Delta |\Psi(0)|^2 = |\Psi_c(0)|^2 - |\Psi_0(0)|^2$ возрастает, что отражает факт возрастания электронной плотности на ядрах ⁶⁷Zn при переходе от несверхпроводящей фазы ($|\Psi_0(0)|^2$) к сверхпроводящей ($|\Psi_c(0)|^2$). Зависимость $\Delta |\Psi(0)|^2$ от T_c может быть понята, если учесть, что стандартная корреляционная длина ξ_0 ("размер" куперовской пары при $T \to 0$ K) для анизотропных сверхпроводников определяется как $\xi_0 \propto T_c^{-1}$, и, таким образом, на рис. 2 отражены зависимости I_0 и $\Delta |\Psi(0)|^2$ от стандартной корреляционной длины ξ_0 . Зависимость $\Delta |\Psi(0)|^2 = f(1/T_c)$ носит экспоненциальный характер:

$$\Delta |\Psi(0)|^2 = 0.2 \exp[-31.4/T_c],$$

где величина $|\Psi(0)|^2$ измеряется в атомных единицах (ат. ед.).

Видно, что максимально возможное изменение электронной плотности на ядрах ⁶⁷Zn при сверхпроводящем переходе составляет $\Delta |\Psi(0)|^2 = 0.2$ ат. ед. и оно соответствует минимально возможному "размеру" куперовской пары ξ_0^{\min} . Существование такого минимального размера связано, по-видимому, с физической невозможностью существования куперовских пар с расстоянием между компонентами меньшим некоторой критической длины. Оценку ξ_0^{\min} можно провести, если учесть, что полная "локализация" куперовской пары на мессбауэровском зонде 67 Zn (процесс $3d^{10} \to 3d^{10}4s^2$ и размер куперовской пары определяется атомным радиусом иона Zn²⁺ $R \approx 0.83 \,\mathrm{A}$) должна привести к возрастанию изомерного сдвига на величину ~ 180 мкм/с (переход от ZnF₂ к Zn) [14], т.е. к возрастанию электронной плотности примерно на 4.5 ат. ед. Следовательно, принимая в области малых ξ_0 зависимость $\Delta |\Psi(0)|^2 \propto \xi_0^{-3}$, получим $\xi_0^{\min} \approx 2.5 \,\text{\AA}$, что согласуется с общепринятыми значениями $\xi_0^{\min} \approx 0.5 - 30$ Å [15].

Существенно, что если "размер" куперовской пары велик (значительно больше атомного масштаба), то изменение электронной плотности на ядрах ⁶⁷Zn ничтожно, и вряд ли возможно надежное наблюдение изменения электронной плотности для материалов с температурами фазового перехода $T_c < 10$ К при использовании спектроскопии на изотопе ⁶⁷Zn.

Таким образом, установлено, что переход в сверх-проводящее состояние приводит к изменению электронной плотности в металлических узлах решеток металлооксида меди, причем существует экспериментально измеримая зависимость между изменением электронной плотности и температурой перехода кристалла в сверхпроводящее состояние. Ожидаемое изменение электронной плотности на ядрах ⁶⁷Zn для материалов с $T_c < 10$ K оказывается ничтожным и поэтому вряд ли возможно надежное наблюдение изменения электронной плотности с использованием спектроскопии на изотопе ⁶⁷Zn для сверхпроводящего перехода в полупроводниках на основе Pb_{1-x}Sn_xTe:In.

Работа выполнена при поддержке Министерства образования РФ (грант Е-00-3.4-42) и Российского фонда фундаментальных исследований (грант 02-02-17306).

Список литературы

- М. Коэн, Г. Глэдстоун, М. Йенсен, Дж. Шриффер. Сверхпроводимость полупроводников и переходных металлов (М., Мир, 1972).
- [2] С.А. Немов, Ю.И. Равич. УФН, 168, 817 (1998).
- [3] R.V. Parfeniev, D.V. Shamshur, M.F. Shakhov. J. Alloys Compd., 219, 313 (1995).
- [4] Н.П. Серегин, П.П. Серегин. ЖЭТФ, 118, 1421 (2000).
- [5] Дж. Шриффер. *Теория сверхпроводимости* (М., Мир, 1965).
- [6] Д. Надь. В кн.: Мессбауэровская спектроскопия замороженных растворов, под ред. А. Вертеш, Д. Надь (М., Мир, 1998) с. 11.
- [7] J.S. Shier, R.D. Taylor. Phys. Rev., 174, 346 (1968).
- [8] Yun-Bo Wang, Guo-Hui Cao, Yang Li, Xin Ju, Long Wei, Wei-Fang Wu. Physica C, 282–287, 1087 (1997).
- [9] С.А. Немов, Н.П. Серегин. ФТП, **36** (8), 914 (2002).
- [10] T. Sasaki, N. Kobayashi, O. Nakatsu, T. Matsuhira, A. Tokima, M. Kikuchi, Y. Syono, Y. Muoto. Physica C, 153–155, 1012 (1988).
- [11] H.M. Ledbetter, S.A. Kim, R.B. Goldfarb. Phys. Rev. B, 39, 9689 (1989).
- [12] A. Junod, T. Craf, D. Sanchez, G. Triscone, J. Muller. Physica C, 165/166, 1335 (1990).
- [13] S.J. Collocott, R. Driver, C. Audrikidis, F. Pavese. Physica C, 156, 292 (1989).
- [14] A. Svane, E. Antoncik. Phys. Rev. B, 34, 1944 (1986).
- [15] Физические свойства высокотемпературных сверхпроводников, под ред. Д.М. Гинзберг (М., Мир, 1990).

Редактор Т.А. Полянская

Possibility of observing the process Bose-condensation in semiconductors by the method of Mössbauer spectroscopy

S.A. Nemov, N.P. Seregin, S.M. Irkaev*

St. Petersburg State Technical University, 195251 St. Petersburg, Russia *Institute for Analytical Instrumentation, Russian Academy of Sciences, 198103 St. Petersburg, Russia

Abstract It has been determined by means of the emission Mössbauer spectroscopy on the ${}^{67}Cu({}^{67}Zn)$ and ${}^{67}Ga({}^{67}Zn)$ isotopes that the transition to the superconducting state leads to the change of the electronic density in the metal sites of the copper metal-oxides lattices (Nd_{1.85}Ce_{0.15}CuO₄, La_{1.85}Sr_{0.15}CuO₄, YBa₂Cu₃O_{6.6}, YBa₂Cu₃O_{6.9}, YBa₂Cu₄O₈, Bi₂Sr₂CaCu₂O₈, Tl₂Ba₂CaCu₂O₈, HgBa₂CuO₄, HgBa₂CaCu₂O₄); moreover, there is a correlation between the change of the electronic density and the temperature of the crystal transition into the superconducting state. Expected change of the electronic density of the 67 Zn nuclei for materials with the temperature of phase transition less than 10 K turns out to be negligibly small and it is hardly possible to observe the change of the electronic density by means of the spectroscopy on the 67 Zn isotope for the superconducting transition in semiconductors.