Влияние примеси теллура на свойства твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X > 0.22)

© Т.И. Воронина, Т.С. Лагунова, Е.В. Куницына, Я.А. Пархоменко, М.А. Сиповская, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 18 декабря 2001 г. Принята к печати 20 декабря 2001 г.)

Проведено исследование влияния примеси теллура на электрофизические свойства твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.22 и X = 0.24), выращенных методом жидкофазной эпитаксии из содержащих свинец растворов–расплавов. Показано, что при невысоком уровне легирования теллуром ($X_{Te}^L < 2 \cdot 10^{-5}$ ат%) в неоднородных сильно компенсированных твердых растворах *p*-типа происходит "залечивание" дефектов и появляется возможность получения слабо компенсирования теллуром возможно получение материала *n*-типа с концентрацией электронов $n = 10^{17} - 10^{19}$ см⁻³. Исследование электролюминесценции гетероструктур *n*-GaInAsSb/*p*-GaSb показывает возможность создания светодиодов с длиной волны $\lambda = 2.0 - 2.5$ мкм.

1. Введение

Твердые растворы $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X > 0.22), имеющие ширину запрещенной зоны $E_g = 0.4 - 0.5$ эВ, могут использоваться для создания оптоэлектронных приборов в области длин волн $\lambda = 2.5 - 3$ мкм. При изготовлении таких приборов необходим материал как n-, так и p-типа с высокой подвижностью электронов и дырок. В работе [1] нами было показано, что эпитаксиальные слои твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ с высоким содержанием индия в твердой фазе X = 0.22 - 0.27 $(E_g = 0.5 - 0.49 эВ$ при T = 77 K) могут быть получены только благодаря использованию свинца в растворе-расплаве в качестве нейтрального растворителя. При этом так же, как и в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с меньшим содержанием индия, нелегированные слои всегда имели р-тип проводимости. Для получения слоев *n*-типа в качестве донорной примеси чаще всего используется теллур.

Теллур, как легирующая примесь, в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.10) изучался нами в работе [2]. Благодаря высокой температуре эпитаксиального роста (650°С) была возможность получения твердых растворов на подложках *n*-GaSb:Те толщиной около 100 мкм и для исследования гальваномагнитных явлений можно было удалить подложку. Было показано, что теллур хорошо растворяется в твердом растворе (коэффициент сегрегации $C = C_{sol}/C_{liq} = 0.7$) и создает два донорных уровня: мелкий водородоподобный $E_{D1} = 0.005$ эВ, присущий примеси теллура, и более глубокий $E_{D2} = 0.04 - 0.05$ эВ, природа которого оставалась неясной.

В работе [3] было показано, что в тонких нелегированных эпитаксиальных слоях твердых растворов толщиной 3–5 мкм, выращенных на подложках *n*-GaSb: Те, всегда происходила диффузия теллура из подложки. При этом теллур действовал двояко, создавая, с одной стороны, мелкие донорные уровни, а с другой стороны, взаимодействуя с присущими антимониду галлия природными дефектами с энергией активации $E_{A2} = 0.035$ эВ и $E_{A3} = 0.07$ эВ, Те создавал новые акцепторные уровни с энергией активации $E_{A4} = 0.1$ эВ, связанные с образованием структурного дефекта (V_{Ga} -примесь Те).

Поскольку теллур способен взаимодействовать с вакансиями и дефектами, представляется интересным исследовать его поведение в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с $E_g = 0.4 - 0.5$ эВ, которые могут найти широкое практическое применение. В настоящей работе изучаются транспортные и фотоэлектрические свойства твердых растворов Ga_{1-X}In_XAs_YSb_{1-Y} с X = 0.22 и X = 0.24, полученных из содержащих свинец растворов-расплавов при различном уровне легирования теллуром. Исследования электропроводности σ , коэффициента Холла R, холловской подвижности μ в твердых растворах в интервале температур 77-300 К, а также электролюминесценции в гетероструктурах с активным слоем $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.22 и X = 0.24) позволяют изучить энергетический спектр примесей, механизм рассеяния носителей тока и выявить влияние теллура на свойства таких твердых растворов.

2. Изготовление образцов для исследований

Эпитаксиальные слои твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ с содержанием индия X > 0.22выращивались методом жидкофазной эпитаксии из содержащих свинец растворов-расплавов при температуре $T = (560 \pm 3)^{\circ}$ С [1]. В качестве подложек использовались монокристаллические пластины GaSb с ориентацией (100) *п*- и *р*-типа проводимости; в качестве компонентов шихты — бинарные соединения GaSb, InAs, In чистотой 99.999%, Sb чистотой 99.999%, а также Рb чистотой 99.9999%.

В результате было создано два типа образцов: с буферным слоем GaSb для исследования транспортных свойств твердых растворов и без буферного слоя — для изучения электролюминесцентных свойств.

№ образца	Х ^{<i>L</i>} _{Te} , ат%	$T = 300 \mathrm{K}$				$T = 77 \mathrm{K}$			
		Тип проводимости	σ , $Om^{-1} \cdot cm^{-1}$	$n, p, 10^{17} \mathrm{cm}^{-3}$	μ , см ² /(B · c)	Тип проводимости	σ , $\mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$n, p, 10^{17} \mathrm{cm}^{-3}$	μ , см ² /(B · c)
1	—	п	13	0.3	3500	р	0.7	0.2	220
2	$1.31\cdot 10^{-5}$	р	23	2.8	500	р	26	0.7	2200
3	$1.75 \cdot 10^{-5}$	р	50	6	520	р	27	0.46	3600
4	$2.2\cdot 10^{-5}$	п	15	3	300	р	0.46	0.5	60
5	$1.09\cdot 10^{-4}$	п	125	1.8	3500	п	60	20	180
6	$2.2\cdot 10^{-4}$	n	130	3	3700	n	75	1.2	4000
7	$1.9\cdot 10^{-2}$	п	2390	59	2526	n	1900	40	3050
8	$6.9\cdot10^{-2}$	n	4550	170	1650	п	6000	180	1900

Таблица 1. Характеристики исследованных образцов твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.22

Примечание. X^L_{Te} — концентрация примеси Те в расплаве.

2.1. Образцы с буферным слоем

Для того чтобы избежать диффузии теллура из подложки n-GaSb: Те в эпитаксиальный слой твердого раствора и влияния этого процесса на электрофизические свойства материала, предварительно из содержащих свинец растворов-расплавов на подложке создавался дополнительный буферный слой высокоомного p-GaSb с низкой концентрацией носителей тока и высоким удельным сопротивлением ($p = 6 \cdot 10^{14} \, \mathrm{cm}^{-3}$, $\rho \gtrsim 400 \, \mathrm{Om} \cdot \mathrm{cm}$) [4]. Толщина буферного слоя GaSb составляла 4-5 мкм. Затем на данном буферном слое из содержащих свинец растворов-расплавов выращивались эпитаксиальные слои твердых растворов Ga_{1-x}In_xAs_ySb_{1-y} с содержанием индия X = 0.22 и X = 0.24 толщиной 1-3 мкм. При легировании данных твердых растворов в качестве донорной примеси использовался теллур, который вводился в жидкую фазу как в элементарном виде $(X_{Te}^L < 10^{-2} \text{ ar%})$, где X_{Te}^L — концентрация теллура в расплаве), так и в виде навески n-GaSb: Те $(X_{\rm Te}^L < 2.5 \cdot 10^{-4} \, {\rm ar}\%).$

2.2. Образцы без буферного слоя

Для изучения электролюминесцентных свойств твердые растворы $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.22 и X = 0.24) выращивались из содержащих свинец растворов-расплавов непосредственно на подложке *p*-GaSb с ориентацией (100) и легировались теллуром концентрации свободных электронов в слое ло $n = 1.2 \cdot 10^{17} - 10^{18}$ см⁻³ при T = 77 К. На поверхности гетероструктур n-Ga_{1-X}In_XAs_YSb_{1-Y}/p-GaSb методом стандартной фотолитографии создавались мезы диаметром 300 мкм.

Исследование транспортных свойств твердых растворов Ga_{1-x}In_xAs_ySb_{1-y}

На образцах прямоугольной формы с шестью индиевыми контактами измерялись электропроводность σ , коэффициент Холла *R*, подвижность $\mu = R\sigma$ в интер-

вале температур 77–300 К при напряженности магнитного поля 0-20 кЭ. Рассмотрим влияние легирования теллуром на гальваномагнитные явления в образцах с содержанием индия X = 0.22 и X = 0.24 раздельно.

3.1. Легированные теллуром образцы с содержанием индия *X* = 0.22

Характеристики исследованных образцов $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.22) в зависимости от уровня легирования теллуром приведены в табл. 1. Температурные зависимости коэффициента Холла R и подвижности μ даны на рис. 1 и 2 соответственно.

Как видно из табл. 1, нелегированный твердый раствор (образец 1) при температуре жидкого азота имеет *p*-тип проводимости с низкой концентрацией и подвижностью дырок. Температурные зависимости коэффициента Холла (рис. 1, *a*) и подвижности (рис. 2) при $T < 150 \,\mathrm{K}$ в образце № 1 указывают на проводимость по мелким акцепторным уровням. При T > 150 К наблюдается смена знака эдс Холла и резкое возрастание холловской подвижности, что может быть связано с началом перехода к собственной проводимости. При T > 250 К уменьшение коэффициента Холла R и большая величина подвижности $\mu > 2000 \, \text{см}^2 / (B \cdot c)$ полностью определяются электронной проводимостью, т.е. наступает собственная проводимость. Однако зависимость $RT^{3/2}$ от обратной температуры при T > 250 K не экспоненциальная и не соответствует ширине запрещенной зоны твердого раствора. Такая неэкспоненциальная зависимость в случае собственной проводимости так же, как и низкая температура перехода к собственной проводимости ($T \approx 150 \, {\rm K}$), могут указывать на существование глубоких "хвостов" примесных состояний, искажающих валентную зону и зону проводимости. Появление таких хвостов характерно для сильно компенсированного материала с большим количеством неравномерно распределенных примесей и структурных дефектов [5]. Свойства таких твердых растворов при легировании теллуром резко изменяются в зависимости от уровня легирования.

Рис. 1. Зависимости коэффициента Холла от обратной температуры в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.22. Номера кривых соответствуют номерам образцов в табл. 1; a — образцы p-типа при $T \approx 77$ K, b — образцы n-типа. Данные, соответствующие p-типу проводимости, обозначены светлыми значками, n-типу — черными.

При слабом легировании теллуром $(X_{\text{Te}}^{L} < 1.75 \cdot 10^{-5} \, \text{ат}\%)$ наблюдалась некоторая неоднородность материала, но всегда получались образцы *р*-типа проводимости как при T = 77 K, так и при $T \approx 300 \, {\rm K}$ с низкой концентрацией и высокой подвижностью дырок (см. табл. 1, образцы 2 и 3). Холла Температурная зависимость коэффициента (рис. 1, а, образцы 2 и 3) определялась тремя энергетическими уровнями: мелким примесным уровнем $E_{A1} < 0.01$ эВ (при T < 120 K), связанным с неконтролируемыми примесями, и более глубокими уровнями $E_{A2} = 0.03$ эВ и $E_{A3} = 0.07$ эВ, которые можно приписать структурному дефекту ($V_{Ga}Ga_{Sb}$)⁺⁺, присущему GaSb и твердым растворам, близким по составу к GaSb. Температурная зависимость подвижности в этих образцах (рис. 2, образцы 2 и 3) характерна для перехода к рассеянию на ионах примеси μ_I при T < 100 K, а при более высоких температурах — на колебаниях решетки µ_L. Полагая экспериментальные значения подвижности при $T \approx 77 \, \mathrm{K} \, \mu_{77} = \mu_I$ и сопоставляя их с теоретическими значениями μ_I^t [6], можно оценить концентрацию ионизированных мелких примесей:

$$N_I^{77} = \mu_I^t p_{77} / \mu_{77}$$

Для мелких примесных уровней $N_I^{77} = 2N_D + p_{77}$, откуда находим концентрацию доноров N_D. Концентрацию дырок при $T \approx 77 \,\mathrm{K}$ полагаем равной $p_{77} = p_{\mathrm{depl}}$ = N_{A1} - N_D, где p_{depl} — концентрация дырок при истощении мелких уровней, и оцениваем величину N_{A1}. В образце 2 с содержанием теллура $X_{\text{Te}}^L = 1.31 \cdot 10^{-5} \, \text{ат}\% \, N_{A1} = 1.5 \cdot 10^{17} \, \text{см}^{-3}, N_D = 10^{16} \, \text{см}^{-3},$ степень компенсации $K = N_D/N_{A1} = 0.07$. В образце 3 с содержанием теллура $X_{\text{Te}}^L = 1.75 \cdot 10^{-5} \text{ at}\%^{-1} N_{A1} = 8 \cdot 10^{16} \text{ см}^{-3}$, $N_D = 10^{16} \text{ см}^{-3}$ и степень компенсации K = 0.12. Полученные значения N_{A1} и N_D указывают на то, что мы получили нормальный слабо компенсированный материал р-типа при легировании теллуром в малых количествах. Объяснить это можно "залечиванием" дефектов, когда теллур взаимодействует с заряженными скоплениями примесей и дефектов, нейтрализуя их. Флуктуации потенциала на дне валентной зоны уменьшаются, концентрация и подвижность в образце определяются в основном дырками на мелких примесных уровнях с энергией активации *E*_{A1} = 0.01 эВ и двухзарядными структурными дефектами с энергией активации $E_{A2} = 0.03$ эВ и $E_{A3} = 0.07 \, \text{эB}$, концентрация которых на порядок меньше мелких примесных уровней ($N_{A2} = 10^{16} \text{ см}^{-3}$).

Таким образом, теллур, как легирующая примесь в небольших количествах, приводит к улучшению свойств твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.22 и при

Рис. 2. Холловская подвижность в зависимости от температуры в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.22. Номера кривых соответствуют номерам образцов в табл. 1. Данные, соответствующие *p*-типу проводимости, обозначены светлыми значками, *n*-типу — черными.

№ образца	X ^L _{Te} , at%	$T = 300 \mathrm{K}$				$T = 77 \mathrm{K}$			
		Тип проводимости	σ , $Om^{-1} \cdot cm^{-1}$	$n, p, 10^{17} \mathrm{cm}^{-3}$	$\mu,$ cm ² /(B · c)	Тип проводимости	σ , $\mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$n, p, 10^{17} \mathrm{cm}^{-3}$	$\mu,$ cm ² /(B · c)
9	_	р	140	14	550	р	190	4	2800
10	$9.9\cdot10^{-5}$	р	200	23	540	р	205	4.8	2680
11	$1.98\cdot 10^{-4}$	п	950	30	2000	р	420	1.8	1460
12	$1.3\cdot10^{-2}$	n	550	13	2660	n	327	7.4	2760
13	$3.4 \cdot 10^{-2}$	п	1400	43	2000	п	1430	26	3300

Таблица 2. Характеристики исследованных образцов твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.24

Примечание. X^L_{Te} — концентрация примеси Те в расплаве.

сохранении дырочного типа проводимости позволяет создать материал с высокой подвижностью дырок и малым числом структурных дефектов.

При легировании теллуром в больших количествах $(X_{\text{Te}}^L > 2 \cdot 10^{-5} \, \text{at}\%)$ начинается перекомпенсация примесей в твердом растворе. Как видно из табл. 1, при содержании теллура $X_{Te}^{L} = 2.2 \cdot 10^{-5}$ ат% в образце 4 при $T = 77 \, \text{K}$ еще сохраняется дырочный тип проводимости, но с очень низкой подвижностью, а при $T = 300 \,\mathrm{K}$ твердый раствор начинает проявлять электронные свойства. При $X_{Te}^{L} = 1.09 \cdot 10^{-4}$ ат% (образец 5) материал становится *n*-типа и при T = 77 K, и при T = 300 K. При этом подвижность электронов при $T = 77 \,\mathrm{K}$ очень низкая, что может быть связано с сильной компенсацией материала и наличием скоплений примесей. На температурных зависимостях R(T) и $\mu(T)$ (рис. 1, b; 2, кривые 5) наблюдается резкий рост коэффициента Холла и подвижности с повышением температуры и появление максимумов при $T \approx 200$ К. Такое поведение зависимостей R(T) и $\mu(T)$ характерно для перехода к проводимости по примесной зоне при низких температурах. Аномально низкие значения коэффициента Холла R и подвижности µ при температуре жидкого азота можно объяснить сильной компенсацией материала, когда распределение примесей становится существенно неоднородным, что приводит к искажению дна зоны проводимости и появлению "хвоста" плотности состояний в запрещенной зоне [5]. Электроны локализуются в наиболее глубоких местах потенциального рельефа, окруженных высокими потенциальными горбами. Коэффициент Холла определяется средней по объему концентрацией \bar{n} [7]. Проводимость σ в неоднородном образце определяется концентрацией на уровне протекания, которая при сильной компенсации активационно зависит от температуры

$$n_c \propto \exp\left(-rac{E_P-E_{
m F}}{kT}
ight),$$

где E_P — энергия на уровне протекания, E_F — энергия на уровне Ферми [8]. Эффективная холловская подвижность в неоднородном материале $\mu = R\sigma$ не отражает поведения истинной (дрейфовой) подвижности, а отличается от нее на множитель $n_c/n < 1$, резко падающий с понижением температуры. Очевидно, отличие холловской измеренной подвижности от дрейфовой будет тем значительнее, чем больше амплитуда неоднородностей в образце.

При еще более высоком уровне легирования теллуром $(X_{Te}^{L} = 2.2 \cdot 10^{-4} \text{ at}\%)$ концентрация электронов возрастает, степень компенсации уменьшается, потенциальный рельеф сглаживается. Коэффициент Холла отражает концентрацию электронов в зоне проводимости. Как видно из табл. 1 (образцы 6 и 7), твердый раствор как при T = 77 K так и T = 300 K всегда имеет *n*-тип проводимости и обладает высокой подвижностью. На температурной зависимости коэффициента Холла (рис. 1, *b*, образцы 6 и 7) наблюдается уменьшение *R* при T > 250 K, указывающее на наличие донорного уровня с энергией активации $E_D = 0.05$ эВ. Такой донорный уровень наблюдался ранее в твердых растворах n-Ga_{1-X}In_XAs_YSb_{1-Y} (X = 0.10) при низких концентрациях электронов [2], природа которого остается неясной.

Зависимость подвижности от температуры (рис. 2, образец 6) характерна для рассеяния на ионах примеси при T < 200 K и на колебаниях решетки при более высоких температурах. Из сопоставления экспериментальной подвижности при T = 77 K с теорией [6] в образцах 6 и 7 была оценена степень компенсации примесей K = 0.2.

При очень высоком уровне легирования теллуром $(X_{\text{Te}}^{L} = 6.9 \cdot 10^{-2} \text{ at}\%, \text{ образец 8})$ можно получить концентрацию электронов выше 10^{19} см^{-3} . При этом, как видно из табл. 1, коэффициент Холла остается практически постоянным во всем интервале температур от 77 до 300 K, что характерно для сильного вырождения. Уровень Ферми составляет $E_{\text{F}} = 50$ мэВ при $T \rightarrow 0$.

Следует отметить, что в твердых растворах *n*-Ga_{1-X}In_XAs_YSb_{1-Y} с X = 0.22, в отличие от *n*-GaSb и *n*-Ga_{1-X}In_XAs_YSb_{1-Y} с X = 0.10, ни при каких концентрациях не наблюдается возрастание коэффициента Холла с ростом температуры, что указывает на отсутствие второй подзоны проводимости типа (111), близко расположенной над минимумом (000) [6] $(E_c^{(111)} - E_c^{(000)} \approx 0.08$ эВ для GaSb).

Таким образом, используя теллур в качестве легирующей примеси в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.22, имеется возможность при слабом легировании теллуром ($X_{Te}^L \lesssim 1.75 \cdot 10^{-5}$ ат%) "залечить" существующие дефекты и получить материал *p*-типа с

3.2. Легированные теллуром образцы с содержанием индия *X* = 0.24

Характеристики исследованных образцов даны в табл. 2. Температурные зависимости коэффициента Холла и подвижности представлены на рис. 3 и 4.

Исходные нелегированные образцы твердых растворов Ga_{1-X}In_XAs_YSb_{1-Y} (X = 0.24) были *p*-типа проводимости при T = 77 и 300 K и имели более высокие концентрации и подвижности дырок (образец 9, табл. 2), чем в твердых растворах с X = 0.22 (образец 1, табл. 1). Высокие подвижности дырок при T = 77 и 300 K свидетельствовали о слабой компенсации примесей ($K \approx 0.1$) и об отсутствии скоплений примесей. Перекомпенсация этого материала происходила при большем содержании теллура. В частности, при содержании теллура в жидкой фазе $X_{Te}^{L} = 9.9 \cdot 10^{-5}$ ат% (образец 10) материал практически не изменялся, оставался *p*-типа при T = 77 и 300 K, в отличие от образца 5 с X = 0.22 при таком же уровне легирования теллуром.

Рис. 3. Зависимости коэффициента Холла от обратной температуры в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.24. Номера кривых соответствуют номерам образцов в табл. 2; a — образцы p-типа при $T \approx 77$ K, b — образцы n-типа. Данные, соответствующие p-типу проводимости, обозначены светлыми значками, n-типу — черными.

Рис. 4. Холловская подвижность в зависимости от температуры в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.24. Номера кривых соответствуют номерам образцов в табл. 2.

Рис. 5. Зависимость $RT^{3/2}$ от обратной температуры для образца 11 при T > 250 К.

Из рис. 3, *а* видно, что в нелегированном образце 9 и в слабо легированном образце 10 на температурной зависимости коэффициента Холла проявляются наклоны, характерные для образцов *p*-типа с энергией активации 0.02 эВ. Подвижность в этих образцах (рис. 4) уменьшается с ростом температуры и определяется рассеянием на ионах примеси и колебаниях решетки. Высокие значения подвижности при T = 77 К свидетельствуют о низкой степени компенсации примесей в этих образцах ($K = N_D/N_A < 0.1$).

При легировании теллуром в количестве $X_{\text{Te}} = 1.98 \cdot 10^{-4}$ ат% (образец 11) начинается перекомпенсация материала: на температурной зависимости коэффициента Холла (рис. 3, *a*) при T = 100 К происходит инверсия типа проводимости, характерная для перехода к собственной проводимости. Зависимости $RT^{3/2}$ от обратной температуры при T > 250 К экспоненциальна (рис. 5). Энергия активации, вычисленная из экспоненциальной зависимости, соответствует ширине запрещенной зоны $E_g = 0.42$ эВ, что находится в хорошем согласии с рассчитанными значениями [1]. Этот результат подтверждает отсутствие флуктуаций дна зоны проводимости и валентной зоны, в отличие от образца 1 с меньшим содержанием индия в твердом растворе.

В образцах 12 и 13 с содержанием теллура $X_{\text{Te}}^{L} = 1.3 \cdot 10^{-2} \text{ ar}\%$ и $X_{\text{Te}}^{L} = 3.4 \cdot 10^{-2} \text{ ar}\%$ наблюдается полная перекомпенсация материала. На температурной зависимости коэффициента Холла (рис. 3, *b*) в этих образцах, так же как и в образцах *n*-типа с меньшим содержанием индия в твердом растворе (образцы 7 и 8) при T > 200 K, наблюдаются наклоны с энергией активации $E_D = 0.05$ эВ. Зависимость подвижности электронов от температуры (рис. 4, образец 13) характерна для вырожденного материала при рассеянии на примесях и колебаниях решетки. Подвижность электронов при T = 77 K позволяет оценить степень компенсации мелких примесей K = 0.1.

Таким образом, в твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ с X = 0.24, в которых отсутствуют флуктуации валентной зоны и зоны проводимости, теллур действует как обычная донорная примесь, компенсирующая дырки, и позволяет получить материал *n*-типа в широком интервале концентраций.

Электролюминесценция гетероструктур *n*-Ga_{1-X}In_XAs_YSb_{1-Y}/*p*-GaSb (X = 0.22 и X = 0.24)

Изучались спектры электролюминесценции гетероструктур n-Ga_{1-X}In_XAs_YSb_{1-Y}/p-GaSb (X = 0.22 и X = 0.24), излучающих в области спектра 2–2.5 мкм, при T = 77 К и T = 300 К. Эпитаксиальные слои n-GaInAsSb:Те выращивались из содержащего свинец раствора–расплава при различном уровне легирования теллуром. Исследовалась возможность создания светодиодов на их основе.

Изготовление образцов осуществлялось на основе твердых растворов n-Ga_{1-X}In_XAs_YSb_{1-Y}: Те, выращенных на подложке p-GaSb (100) с концентрацией дырок $p = 10^{17}$ см⁻³ без буферного слоя. Образец представлял собой мезу со сплошным контактом к p-GaSb и точечным контактом к слою n-GaInAsSb. Спектральные характеристики светодиодов были получены на монохроматоре МДР-2 с использованием схемы синхронного детектирования. Измерения осуществлялись в квазинепрерывном режиме при подаче на p-n-переход питания импульсами типа меандр с частотой следования 400 Гц.

Спектры наиболее интенсивных сигналов излучательной рекомбинации были получены для образцов, выращенных при содержании теллура в расплаве $X_{\text{Te}}^L \approx (2 \cdot 10^{-4} - 2 \cdot 10^{-2})$ ат% (рис. 6, *a*-*c*). Согласно выше изложенным данным, полученным из эффекта Холла, концентрация свободных электронов в слое

Рис. 6. Спектральные зависимости электролюминесценции светодиодов на основе *n*-Ga_{1-X} In_X As_YSb_{1-Y}/*p*-GaSb с X = 0.22 (рис. *a* и *b*) и X = 0.24 (рис. *c*). Температура измерений *T*, K: *a* — 300, *b*, *c* — 77. X_{Te}^L , ат%: *I* — 2.2 · 10⁻⁴, 2-4 — 1.9 · 10⁻².

при $T = 77 \,\mathrm{K}$ составляла $n = 1.2 \cdot 10^{17} \,\mathrm{cm}^{-3}$ (образец 6, табл. 1) и $n = 4.0 \cdot 10^{18} \,\mathrm{cm}^{-3}$ (образец 7, табл. 1). На спектрах виден ряд максимумов, относящихся к рекомбинациям, связанным как с переходами между зонами, так и с проявлением различных уровней.

Проанализируем сначала спектры излучения светодиодов, созданных на основе материала с X = 0.22(рис. 6, *a* и *b*). На рис. 6, *a* при T = 300 К приведены спектры для двух образцов с разной степенью легирования теллуром: $X_{\text{Te}}^L = 2.2 \cdot 10^{-4}$ ат% (кривая *1*) и $X_{\text{Te}}^L = 1.9 \cdot 10^{-2}$ ат% (кривая *2*). Пики излучения при длине волны $\lambda = 2.35$ мкм ($E_g = 0.525$ эВ, кривая *1*) и $\lambda = 2.24$ мкм ($E_g = 0.55$ эВ, кривая *2*) можно свя-

923

зать с межзонной рекомбинацией свободных носителей. Причем сдвиг максимума на кривой 2 объясняется более высоким положением уровня Ферми в зоне проводимости из-за более высокой степени легирования теллуром. В менее легированном образце (кривая 1) при $\lambda = 2.5$ мкм наблюдается пик, связанный с рекомбинационным уровнем $E_{A2} = 0.035$ эВ. По-видимому, это первое зарядовое состояние, обусловленное природным структурным дефектом $V_{\text{Ga}}\text{Ga}_{\text{Sb}}$, отчетливо проявившимся в температурной зависимости коэффициента Холла на материале р-типа. На кривой 2 просматривается центр с энергией ионизации $E_{A3} = 0.07$ эВ. Это второе зарядовое состояние того же акцептора. Первое зарядовое состояние $E_{A2} = 0.035 \, \text{эB}$ на кривой не проявляется. Вероятно, с введением теллура порядка $X_{Te}^{L} = 2 \cdot 10^{-2}$ ат% изменяется зарядовое состояние двухзарядного акцептора и первый уровень исчезает. Такой эффект наблюдался в работе [9] при легировании теллуром GaSb. При температуре жидкого азота для этого же образца (рис. 6, b) в соответствии с максмумом излучательной рекомбинации, наблюдающимся при $\lambda = 1.99$ мкм, ширина запрещенной зоны $E_{g} = 0.62$ эВ. За сигнал при $\lambda = 2.04$ мкм, наблюдаемый на этой же кривой, может быть ответствен донорный уровень $E_{D1} = 0.01 - 0.012$ эВ, который был обнаружен в работе [9], за сигнал при $\lambda = 2.18$ мкм — уровень $E_{D2} = 0.05$ эВ. Можно предположить, что при достаточно большом (для $T = 77 \,\mathrm{K}$) токе 200 мА через p-nпереход растет инжекция дырок в узкозонную область, акцепторные уровни E_{A1} и E_{A2} насыщаются и в рекомбинационный процесс вступают донорные центры 0.012 и 0.05 эВ. Такой же уровень с $E_{D2} = 0.05$ эВ наблюдался на температурной зависимости коэффициента Холла (рис. 1 и 3). Возможно участие и мелких акцепторных центров.

Теперь рассмотрим спектры излучения материала с X = 0.24 (рис. 6, c). Образец содержал теллур в расплаве $X_{\text{Te}}^L = 1.9 \cdot 10^{-2} \text{ at}\%$, как и в рассмотренном выше твердом растворе с X = 0.22. Ширина запрещенной зоны при T = 77 K составляла 0.6 эВ. На спектральной зависимости достаточно хорошо заметны два пика сигнала при длинах волн больше 2.1 мкм. В отличие от образца с X = 0.22 с такой же концентрацией (кривая 3 на рис. 6, b), здесь проявляются оба зарядовых состояния двухзарядного примесного акцептора. Это свидетельствует о том, что в исходном нелегированном материале с X = 0.24 общая концентрация акцепторов была выше, и для полной компенсации акцепторов требуется большая концентрация теллура, что согласуется с результатами холловских измерений.

Таким образом, спектры излучательной рекомбинации, полученные при исследовании электролюминесценции гетероструктур *n*-Ga_{1-X}In_XAs_YSb_{1-Y}/*p*-GaSb (X = 0.22 и X = 0.24), выявили уровни, идентичные тем, которые обнаружены в результате исследования транспортных свойств легированных теллуром твердых

растворов *n*-типа, и показали возможность создания светодиодов на основе этих материалов.

5. Заключение

В работе впервые проведено исследование влияния примеси теллура на электрофизические свойства твердых растворов $Ga_{1-X}In_XAs_YSb_{1-Y}/p$ -GaSb (X = 0.22и X = 0.24), выращенных из содержащих свинец растворов–расплавов, а также исследование спектров электролюминесценции гетероструктур на основе этих твердых растворов. Проведенные исследования позволяют сделать следующие выводы.

1. Нелегированный теллуром твердый раствор $Ga_{1-x}In_{x}As_{y}Sb_{1-y}$ X = 0.22 $(E_{g} = 0.5 \, \mathrm{sB})$ с представляет собой компенсированный неоднородный материал *р*-типа с низкими концентрацией и подвижностью дырок при T = 77 К: $p_{77} = 2 \cdot 10^{16}$ см⁻³, $\mu_{77} \approx 200 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$. При слабом легировании теллуром $(X_{\text{Te}}^L \leqslant 1.75 \cdot 10^{-5} \, \text{at}\%)$ происходит "залечивание" дефектов и появляется возможность получения слабо компенсированного материала *р*-типа с низкой концентрацией и высокой подвижностью дырок $p_{77} \approx 5 \cdot 10^{16} \,\mathrm{cm}^{-3}, \, \mu_{77} \approx 3500 \,\mathrm{cm}^2/(\mathrm{B} \cdot \mathrm{c}), \,$ содержащего малое число структурных дефектов.

2. В отличие от твердых растворов с X = 0.22, нелегированные твердые растворы с X = 0.24 всегда имеют более высокую концентрацию и подвижность дырок при T = 77 К: $p_{77} \approx 4 \cdot 10^{17}$ см⁻³, $\mu_{77} \approx 3000$ см²/(В·с), более однородны и не содержат больших флуктуаций примесей и дефектов. Поэтому слабое легирование теллуром ($X_{\text{Te}}^L < 10^{-4}$ ат%) твердых растворов Ga_{1-X}In_XAs_YSb_{1-Y} (X = 0.24) не приводит к заметному изменению свойств материала.

3. При легировании теллуром в больших количествах ($X_{\text{Te}}^L > 10^{-4} \text{ at}\%$ для состава с X = 0.24 и $X_{\text{Te}}^L > 2 \cdot 10^{-4} \text{ at}\%$ для состава с X = 0.22) в твердых растворах $\text{Ga}_{1-X} \text{In}_X \text{As}_Y \text{Sb}_{1-Y}$ происходит обычная перекомпенсация акцепторных уровней и появляется возможность получения эпитаксиальных слоев *n*-типа проводимости в широком интервале концентраций от $n = 10^{17} \text{ см}^{-3}$ до $n = 10^{19} \text{ см}^{-3}$ с высокой подвижностью электронов $\mu_{77} \approx 4000 \text{ см}^2/(\text{B} \cdot \text{c}).$

4. В легированных теллуром твердых растворах $Ga_{1-X}In_XAs_YSb_{1-Y}$ (X = 0.22 и X = 0.24) *п*-типа, в отличие от *n*-GaSb, не наблюдается проявления второй подзоны проводимости типа (111) вплоть до концентраций $n \approx 10^{19} \text{ см}^{-3}$, т.е. эти твердые растворы могут быть использованы как прямозонные полупроводники в широком интервале концентраций.

5. Исследования электролюминесценции гетероструктур *n*-Ga_{1-X}In_XAs_YSb_{1-Y}/*p*-GaSb (X = 0.22 и X = 0.24) подтверждают результаты, полученные из гальваномагнитных эффектов, и показывают возможность создания светодиодов с длиной волны $\lambda = 2-2.5$ мкм.

Список литературы

- Т.И. Воронина, Т.С. Лагунова, Е.В. Куницына, Я.А. Пархоменко, Д.А. Васюков, Ю.П. Яковлев. ФТП, 35, 55 (2001).
- [2] Т.И. Воронина, Б.Е. Джуртанов, Т.С. Лагунова, Ю.П. Яковлев. ФТП, 25, 283 (1991).
- [3] А.Н. Баранов, Т.И. Воронина, А.Н. Дахно, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Сиповская, Ю.П. Яковлев. ФТП, 24, 1072 (1990).
- [4] А.Н. Баранов, Т.И. Воронина, Т.С. Лагунова, И.Н. Тимченко, З.И. Чугуева, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 23, 780 (1989).
- [5] Б.И. Шкловский, А.Н. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [6] О. Маделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967).
- [7] Б.И. Шкловский, А.Л. Эфрос. ЖЭТФ, 60, 867 (1971).
- [8] М.К. Шейкман, А.Я. Шик. ФТП, 10, 209 (1976).
- [9] А.С. Кюрегян, И.К. Лазарева, В.М. Стучебников, А.Ю. Юнович. ФТП, 6, 242 (1972).

Редактор Т.А. Полянская

The influence of the Te impurity on $Ga_{1-X}In_XAs_YSb_{1-Y}$ solid solution properties (X > 0.22)

T.I. Voronina, T.S. Lagunova, E.V. Kunitsyna, Ya.A. Parkhomenko, M.A. Sipovskaja, Yu.P. Yakovlev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract The influence of the Te impurity on the electrical properties of $Ga_{1-X}In_XAs_YSb_{1-Y}$ solid solutions (X = 0.22 and X = 0.24) grown by LPE from the lead containing melts is investigated. It has been shown that at a low level of Te doping ($X_{Te}^L < 2 \cdot 10^{-5}$ at%) the defect "healing" occurs in nonuniform high-compensated *p*-type solid solutions thus permitting to obtain low-compensated *p*-type materials with a low density of impurities and structural defects. A high level of Te doping makes it possible to obtain *n*-type materials with the electron density of $n = 10^{17} - 10^{19}$ cm⁻³. Investigations of the electroluminescence spectra indicate that *n*-GaInAsSb/*p*-GaSb solid solutions are promising in creating light emitting diodes for the 2–2.5 μ m spectral range.

924