Поведение заряда в скрытом диэлектрике структур кремний-на-изоляторе в электрических полях

© Д.В. Николаев, И.В. Антонова[¶], О.В. Наумова, В.П. Попов, С.А. Смагулова

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 5 ноября 2001 г. Принята к печати 21 ноября 2001 г.)

Исследовано поведение заряда в скрытом окисле структур кремний-на-изоляторе, полученых по технологии Dele-Cut, методом выдержки под напряжением при напряженности электрического поля 2–5.5 MB/см. Обнаружено присутствие в окисле подвижного положительного заряда, перемещающегося под действием приложенного напряжения. Ожидаемого накопления заряда в окисле не обнаружено. Оба наблюдаемых эффекта, по нашему предположению, обусловлены взаимодействием остаточного водорода, присутствующего в окисле в процессе изготовления структур, с ловушками в термически выращенном окисле. В результате в скрытом диэлектрике структуры происходит пассивация ловушек и вводится подвижный при комнатной температуре заряд.

1. Введение

Заряд в диэлектрике является важным параметром в таких структурах, как металл-окисел-полупроводник (МОП) и кремний-на-изоляторе (КНИ). Изменение (накопление) заряда в подзатворном диэлектрике стало одной из принципиальных причин нестабильной работы МОП транзисторов и отказа схем, а также основной причиной диэлектрического пробоя окисла. В случае КНИ структур введение заряда в скрытый диэлектрик может привести к существенному изменению рабочих параметров приборов, создаваемых в слое КНИ. Поэтому исследования стабильности скрытого окисла КНИ структур являются актуальными.

Генерация носителей заряда и их захват в окисле МДП структур изучались многими исследователями в течение нескольких десятилетий [1–5]. Были разработаны математические модели, которые описывают разные механизмы накопления заряда (см., например, [3,6,7]). В последнее время аналогичные процессы исследовались в скрытом диэлектрике структур кремний-наизоляторе, полученных при помощи технологии SIMOX и Smart-CutTM [7–9]. В скрытом диэлектрике этих структур после выдержки под напряжением наблюдалось, как в МДП структурах [8], накопление положительного заряда, который отжигается при температурах 200–400°С.

В данной работе изучалось поведение заряда в скрытом диэлектрике КНИ структур, полученных по технологии Dele-Cut [10].

2. Методика эксперимента

Для создания КНИ структур были использованы пластины Si *n*-типа проводимости, выращенного методом Чохральского. Метод изготовления КНИ структур основан на имплантации водорода в пластину кремния, расщепления ее по слою, ослабленному имплантацией водорода, и переносе тонкой кремниевой пленки на окисленную подложку. Отличие данного способа получения КНИ структур от технологии Smart-Cut заключается в том, что имплантация водорода производится через защитный слой окисла, который после этого убирается, а будущий скрытый диэлектрик (BOX) выращивается на подложке, и склеенной является граница пленка/окисел. В технологии Smart-Cut облученный окисел используется как будущий скрытый диэлектрик.

Для исследований использовались следующие КНИ структуры: *n*-тип проводимости и в пленке, и в подложке, концентрация носителей заряда в пленке КНИ — $5 \cdot 10^{15}$ см⁻³, в подложке — $1.5 \cdot 10^{15}$ см⁻³. Толщина отсеченного слоя кремния составляла 0.48 мкм, толщина скрытого диэлектрика — 0.4 мкм. Из пластин КНИ были сформированы конденсаторы, которые состояли из Al-контакта, слоя кремний-на-изоляторе, слоя скрытого окисла, подложки и нижнего Al-контакта. Использованные в работе конденсаторы имели площадь 0.5 мм².

Простейшим и наиболее широко используемым методом для измерения заряда в окисле является его определение из сдвига по напряжению высокочастотной вольтфарадной характеристики (C-U-характеристики) [11]. Рабочая частота установки составляла 1 МГц. Кроме того, проводились измерения вольт-амперных характеристик I(U) и зависимости тока от времени I(t). Инжекция заряда в скрытый окисел осуществлялась путем выдержки КНИ меза-структур в поле напряженностью $E = \pm (2-5.5)$ МВ/см во временном интервале до 120 мин. К исследованной структуре прилагалось как положительное, так и отрицательное напряжение, и это позволяло инжектировать носители заряда через обе границы скрытого окисла — из пленки Si и из подложки.

3. Результаты

Типичные C-U-характеристики сразу после выдержки под напряжением инжекции до $U_i = 200$ В в течение времени $t_i = 60$ мин показаны на рис. 1. На рис. 1 и далее в работе полярность напряжения определя-

[¶] E-mail: antonova@isp.nsc.ru

Рис. 1. C-U-характеристики после выдержки КНИ структур под напряжением U_i сразу после снятия напряжения. Время выдержки под напряжением $t_i = 60$ мин.

Рис. 2. C-U-характеристики до и после выдержки КНИ структур под положительным напряжением $U_i = 160$ В через разное время *t* после снятия напряжения. Время выдержки под напряжением $t_i = 60$ мин.

ется знаком потенциала, подаваемого на отсеченный слой кремния. C-U-характеристики после приложения положительного напряжения инжекции U_i значительно смещаются в сторону отрицательный напряжений. Как можно видеть, происходит практически параллельный перенос C-U-характеристики относительно исходной, при этом из расчетов получается, что разность между напряжениями плоских зон на обеих границах раздела остается практически постоянной. Также сохраняется наклон кривых в области модуляции емкости, что свидетельствует об отсутствии изменений в плотности поверхностных состояний на границах раздела.

На рис. 2 представлены C-U-характеристики для напряжения инжекции $U_i = 160$ В в зависимости от времени t, прошедшего после инжекции заряда. Видно, что смещение C-U-характеристики не сохраняется после снятия напряжения U_i и структура релаксирует до исходного состояния в течение нескольких часов.

Рассчитанные из C-U-измерений значения заряда на границах раздела окисел/подложка (Q_s) , пленка/окисел (Q_f) , полный заряд в окисле $(Q_t = Q_s +, Q_f)$ и положение центроида заряда (X) представлены на рис. 3. Все эти величины рассчитывались по стандартным формулам с использованием емкостей и напряжений плоских зон [11,12]. При приложении положительного напряжения U_i ($t_i = 60$ мин, инжекция со стороны подложки) наблюдалось увеличение проложительного заряда, приведенного к границе подложка/окисел, до величин 7 · 10¹¹ см⁻² при $U_i = 200$ В (исходный заряд, при $U_i = 0, Q_s^0 \approx 2.4 \cdot 10^{11} \text{ см}^{-2}$, максимальный дополнительный заряд $\Delta Q_s^{\text{max}} = 4.6 \cdot 10^{11} \text{ см}^{-2}$). Соответственно на границе пленка/окисел наблюдается изменение величины заряда Q_f с 2 $\cdot 10^{11}$ до $-2.3 \cdot 10^{11}$ см $^{-2}$ (максимальный дополнительный заряд $\Delta Q_f^{\text{max}} = -4.3 \cdot 10^{11} \,\text{сm}^{-2}$). Поскольку $|\Delta Q_s^{\max}| \approx |\Delta Q_f^{\max}|$, имеет место не накопление, а перемещение заряда внутри окисла от одной границы к другой. Полный заряд в окисле $Q_t = Q_s + Q_f$ при этом практически не изменяется. Приложение отрицательных напряжений U_i до -200 В (инжекция носителей заряда со стороны пленки КНИ структуры) приводит к тому, что полный заряд в окисле немного уменьшается $(\Delta Q_s^{\max} = -1.1 \cdot 10^{11} \text{ см}^{-2} \text{ и } \Delta Q_f^{\max} = 2.5 \cdot 10^{10} \text{ см}^{-2}).$ В верхней половине рис. З представлена зависимость положения центроида заряда от приложенного напряжения. Положение центроида отсчитывается от границы диэлектрика с полупроводником, т.е. от границы окисел/пленка. Заметим, что в исходных структурах (до выдержки под напряжением, или при $U_i = 0$) он находится, как правило, в центре окисла или немного ближе к верхней границе. В области отрицательных напряжений центроид слегка смещается из центральной части окисла к верхней границе пленка/окисел. Величина смещения небольшая и составляет ~ 0.05 мкм. При положительных напряжениях центроид заряда даже при небольших значениях напряженности поля смещается в глубь окисла, и начиная с 3 МВ/см заряд локализован вблизи границы с подложкой.

Рис. 3. Зависимость величины зарядов на границах окисла Q_s , Q_f , полного заряда Q_t и положения центроида в окисле X от приложенного напряжения. Время выдержки под напряжением $t_i = 60$ мин.

Физика и техника полупроводников, 2002, том 36, вып. 7

Рис. 4. Типичная вольт-амперная характеристика КНИ конденсатора.

Рис. 5. Изменение положения центроида в зависимости от времени выдержки под напряжением и времени, прошедшего после снятия напряжения.

Типичная вольт-амперная характеристика I(U) КНИ структуры представлена на рис. 4. Из рисунка видно, что ток в структуре ведет себя несколько по-разному в зависимости от полярности напряжения. Наблюдается небольшой гистерезис тока и при положительном, и при отрицательном смещении. Характер гистеризиса показывает, что при положительном смещении имеет место дрейф ионов, а при отрицательном смещении перезарядка ловушек в окисле. На рис. 2 также виден гистерезис C-U-характеристик.

Зависимость положения центроида от времени выдержки под положительным напряжением и от времени, прошедшего после снятия напряжения, представлены на рис. 5. Из рис. 5 видно, что при выдержке под напряжением основная часть заряда перемещается за относительно короткое время, ~ 20 мин, — центроид из центра окисла смещается к подложке и остается на этом уровне до снятия напряжения. После снятия напряжения центроид заряда начинает возвращаться к исходному положению в окисле, и примерно через 140–150 мин центроид опять находится в центре окисла. Полный заряд окисла, как уже говорилось выше, практически не меняет своего значения. Смещение заряда под напряжением и его возвращение можно проводить многократно.

Для сравнения были проведены измерения вольтфарадных характеристик на МДП структурах с толщиной окисла 0.28 мкм после выдержки в течение 1 ч в электрическом поле ± 3 MB/см. Окисел был выращен в режиме, аналогичном режиму выращивания окисла для КНИ структур. Как и следовало ожидать, в МДП структурах при выдержке под напряжением накапливался положительный заряд ($Q_{\rm acc} = 9 \cdot 10^{10}$ см⁻² при 3 MB/см и 4.31 $\cdot 10^{11}$ см⁻² при E = -3 MB/см), который уже не изменялся после снятия напряжения.

4. Обсуждение

Результаты работы показывают, что поведение заряда во время и после выдержки под напряжение в КНИ структурах, полученных по технологии Dele-Cut, имеет особенности, которые отличают их от МОП конденсаторов с термически выращенным окислом и КНИ структур, полученных методами SIMOX и Smart-Cut. Отличия заключаются в следующем.

1. Заряд в окисле не увеличивается при выдержке структуры под напряжением, несмотря на то что имеет место инжекция электронов в окисел. Вместо этого происходит перемещение заряда в окисле.

2. Как правило, приложение внешнего напряжения обеих полярностей приводит к аналогичным эффектам в окислах. В Dele-Cut-структурах смена полярности напряжения приводит к существенно другим эффектам. Так, при отрицательном смещении на структуре практически ничего не происходит с зарядом в окисле, тогда как положительное смещение вызывает дрейф заряда.

Хотелось бы отметить еще один важный момент. Величина заряда в исходном окисле, использованном для изготовления КНИ структуры, составляла $(1-4) \cdot 10^{11}$ см⁻². После создания КНИ структуры величина заряда возрастала до $(3-5) \cdot 10^{11}$ см⁻².

В таблице представлены для сравнения результаты инжекции электронов в два типа КНИ структур — полученных с использованием технологий Dele-Cut и SIMOX. Инжектируемый заряд Q_i в обоих случаях практически один и тот же, при том что в Dele-Cut-структурах инжекция проводится в течение 60 мин, а не 2 мин, как в случае SIMOX-структур. В SIMOX-структурах имеет место накопление положительного заряда для обеих полярностей приложенного напряжения, тогда как в Dele-Cut-структурах накопления заряда не наблюдается.

Прямая ветвь вольт-амперной характеристики (рис. 4) спрямляется в координатах Фаулера–Нордхгейма при значениях напряженности электрического поля $E \approx 5 \text{ MB/см}$. При E > 5.5 MB/см в структурах, исследованных в данной работе, начинают происходить пробойные явления. Прохождение тока через окисел в

Dele-Cut $(t_i = 60 \text{ мин})$				SIMOX ($t_i = 2$ мин)			
U_i, \mathbf{B}	<i>Е</i> , МВ/см	$Q_i, 10^{14} \mathrm{cm}^{-2}$	Q_t , $10^{11} \mathrm{cm}^{-2}$	U_i, \mathbf{B}	<i>Е</i> , МВ/см	$Q_i, 10^{14} \mathrm{cm}^{-2}$	$Q_t, 10^{12} \mathrm{cm}^{-2}$
Инжекция из пленки							
-200	-5.0	23	3.32	-190	5.28	82	3.2
-180	-4.5	15	3.67	-170	4.72	48	2.9
-160	-4.0	9.5	3.56	-150	4.17	1.2	2.6
-140	-3.5	7.85	3.91	-130	3.61	0.1	2.5
0	0	0	4.33	0	0	0	2.2
Инжекция из подложки							
140	3.5	7.85	5.0				
160	4.0	9.5	5.13	190	5.28	0.4	3.6
180	4.5	15	4.95	210	5.83	0.59	4.2
200	5.0	23	4.75	230	6.39	1.5	4.7
220	5.5	50.5	5.41	250	6.94	3.5	5.0

Сравнение условий инжекции и накопления заряда в ВОХ КНИ структур, полученных по технологии SIMOX [9] и Dele-Cut

Dele-Cut-структурах описывается обычным механизмом и в общем ничем не отличается от случая МДП или других КНИ структур.

Нужно еще раз отметить, что в исходном термическом окисле наблюдаются эффекты накопления положительного заряда при выдержке его под напряжением. Накопленный заряд, как это обычно имеет место в МДП структурах, является стабильным при комнатной температуре.

Ловушкам в окислах, которые перезаряжаются во время инжекции носителей заряда, посвящено большое количество работ (см., например, [13,14]). В качестве примера для SIMOX-структур можно перечислить следующие электронные ловушки: 1) парамагнитные E'-центры, связанные с избыточным кремнием в окисной матрице, сечение захвата $\sigma = 10^{-14}$ см²; 2) ловушки, возникшие в результате загрязнения во время имплантации кислорода, $\sigma = 10^{-16}$ см²; 3) ловушки, связанные с водой (обычно присутствующие в термических окислах), $\sigma = 10^{-17}$ см² [8]. Именно с наличием ловушек и связывают накопление заряда в скрытом диэлектрике [8,13,14].

Рассмотрим, чем окисел в Dele-Cut-структурах отличается от скрытого окисла в различных типах КНИ структур, где используются имплантация и отжиг, и от исходного термического окисла. В процессе создания КНИ структур по технологии SIMOX применяются имплантация больших доз ионов кислорода и высокотемпературный отжиг, после которых в окисле остается достаточно большое количество дефектов, являющихся ловушками с глубокими урвонями, ответственными за накопление и сохранение заряда. В Smart-Cut-структурах имплантация водорода проводится через окисел, что также является причиной нарушения пространственной структуры окисла и образования радиационных дефектов. В процессе создания Dele-Cut-структур окисел остается ненарушенным, поскольку не подвергается никаким внешним воздействиям, за исключением процесса склейки пластин и последующего высокотемпературного отжига. Однако в процессе изготовления Dele-Cutструктур, как показано в [15], водород присутствует в высокой концентрации как на границах, так и в самом окисле. Именно этим, по-видимому, и объясняется тот факт, что обычный по своим свойствам термический окисел приобретает в КНИ структуре новые свойства.

В термическом окисле, как известно, заряд локализован в основном вблизи границы с Si [16], в нашем случае это граница окисел/подложка. В КНИ структуре, как уже отмечалось выше, заряд, локализованный в окисле, существенно увеличивается, и его центроид уже расположен примерно в центре окисла. Это позволяет предположить, что заряд в скрытом диэлектрике включает в себя и заряд протонов, закрепившихся прежде всего на дефектах вблизи обеих границ.

При приложении положительного смещения на структуру протоны под действием поля перемещаются с границы (отсеченный слой кремния)/окисел на границу окисел/подложка. Более того, проявление отрицательного заряда на первой границе связано скорее всего с распадом нейтральных центров, содержащих водород, и дрейфом протонов на другую границу. Снятие напряжения приводит к возникновению обратного потока протонов за счет внутреннего поля и возвращению их в исходное положение на границу (отсеченный слой кремния)/окисел.

Отрицательная полярность приложенного напряжения должна привести к аналогичным эффектам, если на границе окисел/подложка или в объеме окисла присутствуют протоны. Однако отсутствие существенного смещения центроида и изменения зарядов Q_s и Q_f означает, что на данной границе, как и в объеме, подвижных протонов нет. По-видимому, заряд на данной границе связан только с неподвижными центрами. Это могут быть и щелочные металлы, и водород, закрепленный на дефектах, и другие положительно заряженные дефекты. Главное, что этот заряд неподвижен при комнатной температуре.

Отсутствие накопления заряда в окисле объясняется, по-видимому, взаимодействием водорода с ловушками,

5. Заключение

Исследовано поведение заряда в скрытом окисле КНИ структур, полученных по технологии Dele-Cut, методом выдержки при напряженности электрического поля 2–5.5 MB/см. Обнаружено перемещение положительного заряда в окисле и его последующая релаксация (возврат к исходному местоположению) после снятия напряжения. Ожидаемого накопления заряда в окисле не обнаружено. Наблюдаемые эффекты, по нашему предположению, обусловлены влиянием остаточного водорода, присутствующего в высокой концентрации в окисле в процессе изготовления КНИ структур, в результате чего происходит пассивация ловушек в скрытом диэлектрике и вводится подвижный при комнатной температуре заряд.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 01-02-16986) и частичной поддержке МНТЦ (грант № 563).

Список литературы

- [1] M. Lenzlinger, E.H. Snow. J. Appl. Phys., 40, 278 (1969).
- [2] M.V. Fischetti. J. Appl. Phys., 57, 2860 (1985).
- [3] Y. Lu, C.-T. Sah. J. Appl. Phys., 76, 4724 (1994).
- [4] D.J. DiMaria, E. Cartier, D.A. Buchanan. J. Appl. Phys., 80, 304 (1996).
- [5] K. Kobayashi, A. Teramoto, H. Miyoshi. IEEE Trans. Electron. Dev., 46, 947 (1999).
- [6] M.V. Fischetti. Phys., Rev. B, 31, 2099 (1985).
- [7] S. Mayo, J.S. Suehle, P. Roitman. J. Appl. Phys., 47, 4113 (1993).
- [8] C.S. Ngwa, S. Hall. Semicond. Sci. Technol., 9, 1069 (1994).
- [9] A.N. Nazarov, V.I. Kilchytska, I.P. Barchuk, A.S. Tkachenko, S. Ashok. J. Vac. Sci. Technol. B, 18, 1254 (2000).
- [10] В.П. Попов, И.В. Антонова, В.Ф. Стусь, Л.В. Миронова. Патент № 2164719 от 28.09.1999.
- [11] K. Nagai, T. Sekigawa, Y. Hayashi. Sol. St. Electron., 28, 789 (1985).
- [12] F.T. Brady, S.S. Li, D.E. Burk. Appl. Phys. Lett., 52, 886 (1988).
- [13] А.А. Лебедев, В. Экке. ФТП, 19, 1087 (1985).
- [14] L.P. Reilly, T. Robertson. Phys. Rev. B, 47, 3780 (1983).
- [15] I.A. Antonova, V.P. Popov, V.F. Stas, A.K. Gutakovskii, A.E. Plotnikov, V.I. Obodnikov. Microelectronic Engineering, 48, 383 (1999).
- [16] E.H. Snow, A.S. Grove, B.E. Deal, C.T. Sah. J. Appl. Phys., 36, 1664 (1965).

Редактор Л.В. Шаронова

Investigation of charge behaviour in buried oxide of silicon-on-insulator structures in electric field

D.V. Nikolaev, I.V. Antonova, O.V. Naumova, V.P. Popov, S.A. Smagulova

Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia