Эффект поля в системе электролит–твердый раствор $(TIBiSe_2)_{1-x} - (TIBiS_2)_x$

© О.Ю. Шевченко, А.М. Яфясов[¶], В.Б. Божевольнов, И.М. Иванкив, А.Д. Перепелкин

Научно-исследовательский институт физики Санкт-Петербурского государственного университета, 198504 Санкт-Петербург, Россия

(Получена 12 сентября 2001 г. Принята к печати 13 сентября 2001 г.)

Для определения электрофизических свойств поверхности и зонных параметров в приповерхностных слоях полупроводниковых твердых растворов (TlBiSe₂)_{1-x} – (TlBiS₂)_x при комнатной температуре использован метод эффекта поля в электролитах. Определены закон дисперсии и эффективная масса электронов зоны проводимости, концентрация ионизованной донорной примеси и положение уровня Ферми. Проведено сопоставление экспериментальных и теоретически рассчитанных вольт-фарадных характеристик.

Твердые растворы TlBiSe₂ и TlBiS₂ принадлежат к группе полупроводников TlB^VC₂^{VI} (B^V:Bi, Sb; C^{VI}:S, Se, Te) со слоистой структурой, представляющих собой структурные аналоги PbSe и PbS [1–4]. Исследование этих материалов представляет интерес в связи с возможностью создания на их основе опто-акустических детекторов, инфракрасных детекторов, термоэлектрических генераторов и др. [1–4].

Имеющиеся в литературе данные по ширине запрещенной зоны E_g , эффективной массе электрона m_e^* и диэлектрической проницаемости ε_{sc} представлены в таблице.

Кристаллы TlBiS₂, выращенные методом Бриджмена– Стокбаргера, могут иметь упорядоченную структуру, например S–Tl–S–Bi–S [2], получаемую при очень медленном охлаждении кристалла, и разупорядоченную, например S–Tl, Bi–S–Tl, Bi–S [2]. Для тонких пленок TlBiSe₂ электрофизические и зонные параметры двух типов структур (упорядоченных и разупорядоченных), по данным работы [3], обнаруживают некоторое различие (см. в таблице две верхние строки).

В настоящей работе проводились исследования упорядоченных структур (TlBiSe₂)_{1-x}-(TlBiS₂)_x (x = 0, 0.25, 0.50, 0.75, 1), выращенных методом Бриджмена-Стокбаргера [1].

Для определения электрофизических свойств поверхности и зонных параметров в приповерхностных слоях полупроводникового твердого раствора (TIBiSe₂)_{1-x}-(TIBiS₂)_x был использован метод эффекта поля в электролитах [8–12]. Этот метод основан на измерениях вольт-фарадных, $C(\varphi)$, и вольт-амперных, $I(\varphi)$, характеристик границы раздела полупроводник-электролит [8]. В качестве электролита использовался водный раствор КСl, близкий к насыщенному. Измерения вольт-фарадных и вольт-амперных характеристик проводились в потенциостатическом режиме при циклическом изменении электродного потенциала φ со скоростями изменения 10–100 мВ/с при комнатных температурах.

Экспериментальные зависимости $C(\varphi)$ для всех исследованных составов (TlBiSe₂)_{1-x}-(TlBiS₂)_x имеют вид,

характерный для полупроводников *n*-типа проводимости [13] (рис. 1–5), имеют гистерезис, а в катодной области электродных потенциалов выходят на "полку". Разброс величины емкости в "полке" (C_p) для разных составов твердого раствора показан в таблице. Наличие "полки" на зависимостях $C(\varphi)$ может свидетельствовать о присутствии на поверхности переходного слоя с диэлектрическими свойствами, который характеризуется величиной

$$\frac{d_i}{\varepsilon_i} = \frac{\varepsilon_0}{C_p},\tag{1}$$

где d_i — толщина слоя, ε_i — диэлектрическая проницаемость слоя, $\varepsilon_0 = 8.85418782 \cdot 10^{-12} \, \Phi \cdot \text{м}^{-1}$ электрическая постоянная (см. таблицу).

Рис. 1. Экспериментальная зависимость $C(\varphi)$ для TIBiSe₂, измеренная при непрерывном изменении электродного потенциала в цикле "анод-катод-анод", в координатах $C(\varphi)$ и $C^{-2}(\varphi)$.

[¶] E-mail: yafyasov@desse.phys.spbu.ru

x	<i>Е</i> _g , эВ	\mathcal{E}_{sc}	m_e^*/m_0	$C_p, 10^{-6} \Phi/\text{cm}^2$	$d_i/\varepsilon_i,10^{-8}\mathrm{cm}$	$N_b, 10^{13} \mathrm{cm}^{-2}$	$N_d, 10^{18} \text{ cm}^{-3}$	$E_f - E_c,$ əB	m_e^*/m_0 (эксперимент)
0	0.45 [3]	21.50 [3]	0.085 [3]	5.0-7.2	1.2-1.8	1.5-3.2	0.70-2.30	(-0.050) - 0.030	0.085-0.150
	0.47 [3]	20.50 [3]	0.088 [3]						
	0.30 [4]	20.04 [1]	0.110 [5]						
0.25		18.78 [1]		3.8-8.0	1.1-2.3	1.2-2.9	0.50-8.00	0.025-0.070	0.050-0.100
0.50		21.71 [1]		2.2 - 5.2	1.7 - 4.0	0.8-1.8	0.17-0.83	(-0.020) - (-0.080)	0.035-0.125
0.75		21.71 [1]		1.4-3.0	3.0-6.3	0.4-0.9	0.27-5.50	0.050 - 0.200	0.021-0.045
1	0.42 [6]	16.40 [6]	0.250 [7]	1.0-2.1	4.2-8.9	0.06-0.39	0.26-0.35	(-0.150) - (-0.160)	0.015-0.045

Литературные и экспериментальные параметры $(TlBiSe_2)_{1-x} - (TlBiS_2)_x$

Рост d_i/ε_i (см. таблицу) и уменьшение C_p с увеличением x твердого раствора (см. таблицу и рис. 2) могут быть связаны либо с увеличением толщины диэлектрического слоя d_i , либо с уменьшением диэлектрической проницаемости слоя ε_i .

Рис. 2. Экспериментальные зависимости $C(\varphi)$ для $(\text{TlBiSe}_2)_{1-x} - (\text{TlBiS}_2)_x$, измеренные при непрерывном изменении электродного потенциала в цикле "анод-катод" для составов: I - x = 0, 2 - x = 0.25, 3 - x = 0.50, 4 - x = 0.75, 5 - x = 1.

Участки зависимостей $C(\varphi)$, соответствующие обеднению, спрямляются в координатах Шоттки–Мотта $C^{-2}(\varphi)$ (рис. 1 и 3). Это позволило определить значения потенциалов плоских зон φ_{fb} , плотность встроенного в диэлектрический слой заряда N_b и концентрацию ионизованной донорной примеси N_d [13].

Приведенная к единице поверхности плотность встроенного в диэлектрический слой заряда рассчитывалась по формуле

$$N_b = \frac{\Delta \varphi_{fb} C_p}{q},\tag{2}$$

где q — заряд электрона, $\Delta \varphi_{fb} = \varphi_{fb}^{a-c} - \varphi_{fb}^{c-a}$, φ_{fb}^{a-c} и φ_{fb}^{c-a} — потенциалы плоских зон для "анод-катодных" (a-c) и "катод-анодных" (c-a) направлений изменения электродного потенциала соответственно (см. рис. 1). Определенные из эксперимента величины N_b для разных составов твердого раствора приведены в таблице.

Рис. 3. Экспериментальная зависимость $C(\varphi)$ для TlBiSe₂, измеренная при непрерывном изменении электродного потенциала в цикле "анод-катод", в координатах $C^4(\varphi)$ и $C^{-2}(\varphi)$.

Физика и техника полупроводников, 2002, том 36, вып. 4

Видно, что при увеличении содержания серы в твердом растворе плотность встроенного в диэлектрический слой заряда N_b монотонно уменьшается более чем на порядок.

Определив потенциалы плоских зон φ_{fb} (см. рис. 1 и 3), можно перейти от электродных потенциалов φ к поверхностным потенциалам

$$V_s = -(\varphi - \varphi_{fb}), \tag{3}$$

от измеряемой емкости *C* к емкости области пространственного заряда

$$C_{sc}(V_s) = C[-(\varphi - \varphi_{fb})] \tag{4}$$

и оценить концентрацию ионизованной донорной примеси по формуле

$$N_d = \frac{2}{q\varepsilon_0\varepsilon_{sc}} \left[\frac{d(C_{sc}^{-2})}{dV_s}\right]^{-1}.$$
 (5)

Рассчитанные из экспериментальных зависимостей $C(\varphi)$ величины концентрации ионизованной донорной примеси N_d представлены в таблице. Видно, что зависимость $N_d(x)$ имеет некую особенность при x = 0.50. Аналогичная особенность для концентрации электронов при x = 0.50 отмечалась ранее в работе [1].

Рис. 4. Экспериментальные зависимости $C(\varphi)$ (сплошные линии), измеренные при непрерывном изменении электродного потенциала в цикле "анод-катод", и теоретически рассчитанные зависимости $C_{sc}(V_s)$ (штриховые линии) для (TlBiSe₂)_{1-x} - (TlBiS₂)_x: I - x = 0 ($m_e^* = 0.100m_0$, $N_d = 1.2 \cdot 10^{18} \text{ cm}^{-3}$); 2 - x = 0.25 ($m_e^* = 0.100m_0$, $N_d = 4.35 \cdot 10^{17} \text{ cm}^{-3}$).

Puc. 5. Экспериментальные зависимости $C(\varphi)$ (сплошные линии), измеренные при непрерывном изменении электродного потенциала в цикле "анод-катод", и теоретически рассчитанные зависимости $C_{sc}(V_s)$ (штриховые линии) для (TlBiSe₂)_{1-x} - (TlBiS₂)_x. I - x = 0.50 ($m_e^* = 0.050m_0$, $N_d = 6.1 \cdot 10^{17} \text{ cm}^{-3}$); 2 - x = 0.75 ($m_e^* = 0.030m_0$, $N_d = 3.35 \cdot 10^{17} \text{ cm}^{-3}$); 3 - x = 1 ($m_e^* = 0.025m_0$, $N_d = 2.15 \cdot 10^{17} \text{ cm}^{-3}$).

Все экспериментальные зависимости $C(\varphi)$ в области сильного вырождения электронов оказались линейными в координатах $C^4(\varphi)$ (см. рис. 3), что в соответствии с формулой [14]

$$C_{sc} = G(\varepsilon_{sc})^{1/2} \left[\frac{m_e^*}{m_0}\right]^{3/4} |V_s - V_z|^{1/4}, \tag{6}$$

где $G = 8.9738 \cdot 10^{-6} \, \Phi/cm^2 \cdot B^{1/4}$, а $qV_z = E_{c,v} - E_f$ — расстояние от дна зоны проводимости или валентной зоны до уровня Ферми в объеме, указывает на параболический характер закона дисперсии зоны проводимости.

Для исследованных образцов положения уровня Ферми относительно края зоны проводимости $E_f - E_c$ определялись (см. рис. 3) из соотношения

$$\varphi|_{c=0} - \varphi_{fb} = -V_s|_{C_{sc}=0} = \frac{E_f - E_{c,v}}{q},$$
 (7)

которое непосредственно следует из (3), (4), (6) при подстановке C = 0, и эти данные приведены в таблице.

Эффективная масса электронов зоны проводимости m_e^*/m_0 определялась из зависимостей $C^4(\varphi)$ в обла-

сти сильного вырождения электронов на поверхности (см. рис. 2) по формуле

$$\frac{m_e^*}{m_0} = \frac{G^{-4/3}}{\varepsilon_{sc}^{2/3}} \left(\frac{dC_{sc}^4}{dV_s}\right)^{1/3},\tag{8}$$

которая получается при дифференцировании (6) с учетом (3) и (4).

Соответствующие значения m_e^*/m_0 приведены в таблице. Видно, что для x = 0 они близки к известным из литературы [3,5], а для x = 1 найденная величина m_e^*/m_0 значительно меньше приведенной в литературе [1]. Следует отметить, что данных о величинах m_e^*/m_0 для 0 < x < 1 в литературе нет.

На рис. 4 и 5 проводится сопоставление экспериментальных зависимостей $C(\varphi)$ с теоретически рассчитанными зависимостями $C_{sc}(V_s)$. Теоретический расчет зависимостей $C_{sc}(V_s)$ проводился путем самосогласованного решения уравнений Шредингера и Пуассона по методике, описанной в работе [15]. В качестве параметров расчета были взяты значения m_e^* и N_d , полученные из эксперимента (приведены в подписях к рис. 4 и 5), E_g и ε_{sc} из литературы (см. таблицу), и предполагалось, что эффективная масса дырки $m_h^* = 0.40m_0$, энергия спинорбитального расщепления валентной зоны $\Delta = 1.0$ эВ.

Из сравнения экспериментальных зависимостей $C(\varphi)$ и теоретически рассчитанных зависимостей $C_{sc}(V_s)$ видно, что в области аккумуляции электронов на поверхности теория и эксперимент хорошо согласуются для составов с x = 0 и x = 0.25 (рис. 4) и не согласуются для x = 0.50, 0.75, 1.

Список литературы

- M. Ozer, K.M. Paraskevopoulos, A.N. Anagnostopoulos, S. Kokkou, E.K. Polychroniadis. Semicond. Sci. Technol., 13, 86 (1998).
- [2] M. Ozer, K.M. Paraskevopoulos, A.N. Anagnostopoulos, S. Kokkou, E.K. Polychroniadis. Semicond. Sci. Technol., 11, 1405 (1996).
- [3] C.L. Mitsas, D.I. Siapkas. Sol. St. Commun., 83, 857 (1992).
- [4] S.A. Dembrovskii, L.G. Lisovskii, V.M. Bunin, A.S. Kanischecheva. Izv. Akad. Nauk SSSR, Neorg. Mater., 5, 2023 (1969).
- [5] C.L. Mitsas, E.K. Polychroniadis, D.I. Siapkas. Thin Sol. Films, 353, 85 (1999).
- [6] A.N. Veis, D.D. Koditsa, N.S. Popovich. Phys. St. Sol. (a), 107, K169 (1988).
- [7] L.I. Vinokurova, Y.Yu. Ivanov, L.S. Klimova, D.D. Koditsa, N.S. Popovich. Sov. Phys. — Lebedev Inst. Rep., N 7, 49 (1988).
- [8] А.М. Яфясов, В.Б. Божевольнов, А.Д. Перепелкин. ФТП, 21, 1144 (1987).
- [9] А.М. Яфясов, А.Д. Перепелкин, Ю.Н. Мясоедов, М.В. Матвиив. ФТП, 24, 875 (1990).
- [10] А.Д. Перепелкин, А.М. Яфясов, В.Б. Божевольнов. ФТП, 25, 156 (1991).
- [11] А.М. Яфясов, В.Г. Савицкий, Р.Н. Ковтун, А.Д. Перепелкин, В.Б. Божевольнов. ФТП, 24, 875 (1990).

- [12] A. Yafyasov, V. Bogevolnov, A. Perepelkin. Phys. St. Sol. (b), 183, 419 (1994).
- [13] S.M. Sze. Physics of Semiconductor Devices (1981).
- [14] А.М. Яфясов, В.В. Монахов, О.В. Романов. Вестн. ЛГУ, N 4, 103 (1986).
- [15] A. Yafyasov, I.M. Ivankiv. Phys. St. Sol. (b), 208, 41 (1998).

Редактор Л.В. Шаронова

Field effect in the system electrolyte–solid solution $(TIBiSe_2)_{1-x}$ – $(TIBiS_2)_x$

O.Yu. Shevchenko, A.M. Yafyasov, V.B. Bogevolnov, I.M. Ivankiv, A.D. Perepelkin

Institute of Physics, Saint-Petersburg State University, 198504 St. Petersburg, Russia

Abstract The method of field effect in electrolytes is used for finding electrophysical characteristics of surface and band parameters in surface layers of the $(TlBiSe_2)_{1-x}-(TlBiS_2)_x$ semiconductor solid solutions at the room temperature. The dispersion law has been formulated; the electron effective mass in the conduction band, the ionized donor impirity density and the Fermi level location have been found. A comparison is made between experimental and theoretically calculated capacitance–voltage characterictics.