Особенности токопрохождения в монокристаллах PbGa₂Se₄

© Б.Г. Тагиев, Н.Н. Мусаева, Р.Б. Джаббаров

Институт физики Академии наук Азербайджана, 370143 Баку, Азербайджан

(Получена 15 февраля 2001 г. Принята к печати 20 июня 2001 г.)

Представлены результаты исследования вольт-амперных характеристик монокристаллов $PbGa_2Se_4$ с удельным сопротивлением $10^{10}-10^{12}\,\mathrm{OM}\cdot\mathrm{cm}$, полученных методом Бриджмена—Стокбаргера. Вычисленное с помощью дифференциального метода анализа вольт-амперной характеристики значение подвижности основных носителей ($\mu=14\,\mathrm{cm/B}\cdot\mathrm{c}$) позволяет оценить ряд параметров: концентрацию носителей у катода $n_{k0}=2.48\cdot10^8\mathrm{cm}^{-3}$, ширину приконтактного барьера $d_k=5.4\cdot10^{-8}\,\mathrm{cm}$, прозрачность катода $D_k^*=10^{-5}-10^{-4}\,\mathrm{sB}$, положение квазиуровня Ферми $E_F=0.38\,\mathrm{sB}$. Показано, что в сильных электрических полях токопрохождение в монокристаллах $PbGa_2Se_4$ обеспечивается эффектом Пула—Френкеля. Вычисленная из значений коэффициента Френкеля величина диэлектрической проницаемости оказалась равной 8.4.

Тройное халькогенидное соединение $PbGa_2Se_4$ является фоточувствительным материалом, представляющим большой практический интерес для создания фотоприемников и фотопреобразователей, работающих в широкой области спектра (0.40–1.20 мкм) [1].

В [1,2] нами исследована температурная зависимость значений темнового и светового токов и определено энергетическое положение центров рекомбинации, а также приведены результаты исследований по определению значений ширины запрещенной зоны, соответствующих прямым и непрямым разрешенным оптическим переходам в монокристаллах PbGa₂Se₄.

В настоящей работе представлены результаты исследований вольт-амперных характеристик (BAX) монокристаллов $PbGa_2Se_4$ с удельным сопротивлением $10^{10}-10^{12}\,\mathrm{Om}\cdot\mathrm{cm}$ (при $T=300\,\mathrm{K}$). С этой целью были изготовлены образцы с толщинами от 50 до 200 мкм. Индиевые контакты наносились на естественные сколы кристаллов. Перед измерениями образцы нагревались до температуры 380 K, а затем медленно (в течение 2 ч) охлаждались в темноте и в вакууме до 300 K.

Типичные BAX для всех исследуемых образцов приведены на рис. 1. Видно, что при изменении электрического поля от 10^2 до 10^5 B/см ток, проходящий через структуры In–PbGa $_2$ Se $_4$ –In, увеличивается на 3-4 порядка величины в зависимости от температуры. С понижением температуры зависимость тока от напряжения усиливается, и BAX смещаются в сторону высоких электрических полей. На начальном участке BAX наблюдается быстрый рост тока с увеличением напряжения ($I \propto U^n$). Далее, в диапазоне напряжений до 120 B, зависящем от температуры, скорость роста тока уменьшается.

Ток в образце ограничен контактом — поверхностным барьером, включенным в запорном направлении, — и при незначительном увеличении напряжения ($\approx 10\,\mathrm{B}$) может происходить пробой барьера вследствие ударной ионизации в области объемного заряда, что приводит к быстрому росту тока с напряжением при низких напряжениях.

Начиная с 40 В наблюдается сравнительно медленный рост тока, который обусловливается захватом инжектированных электронов пустыми уровнями $E_t = 0.72\,\mathrm{эB}$, и это продолжается до напряжения предельного заполнения ловушек. Однако если в образце имеется выраженная неоднородность, область которой является областью повышенного сопротивления, то проводимость этой области должна падать с ростом напряжения.

Для аналитического представления ВАХ существует несколько приближенных методов. Полученные для структур $In-PbGa_2Se_4-In$ результаты анализировались

Рис. 1. Вольт-амперные характеристики монокристалла $PbGa_2Se_4$ толщиной $L=120\,\mathrm{MKM}$ при температурах T,K: $I=125,\ 2=161,\ 3=181,\ 4=198,\ 5=230,\ 6=248,\ 7=340,\ 8=360,\ 9=380.$

на основе степенной зависимости тока I от напряжения U ($I \propto U^{\alpha}$) [3–4]:

$$\alpha = \frac{d \lg I}{d \lg U} = \frac{dI}{dU} \frac{U}{I}.$$
 (1)

Зависимость $\alpha(U, I)$ при температуре 181 К имеет одну экстремальную точку ($\alpha_{\min} = 0.66$ при $U_{\min} = 65$ В ($I_{\min} = 1.37 \cdot 10^{-8}$ А)) (рис. 2).

По теории, изложенной в [3], энергия активации глубоких уровней определяется формулой

$$E_{t} = kT \ln \left[2 \left(\frac{2\pi m_{n}kT}{h^{2}} \right)^{3/2} \frac{3(1 + \alpha_{m})e\mu SV_{m}}{2\alpha_{m}^{2}(5 - 8\alpha_{m}^{2})LI_{m}} \right], \quad (2)$$

где $2\left(\frac{2\pi m_n kT}{h^2}\right) \approx 10^{19}\,\mathrm{cm}^{-3}\left(\frac{m_n}{m}\frac{T}{300K}\right)^{3/2} = N_c$ — эффективная плотность состояний в зоне проводимости, $m_n=0.5m_e$ — эффективная масса, h — постоянная Планка, k — постоянная Больцмана, T — абсолютная температура, L — толщина образца, S — площадь контактов. Используя значения E_t , определенные из температурной зависимости проводимости, вычислена подвижность основных носителей $\mu=14\,\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$, и это дает возможность определить такие параметры, как n_{k0} (концентрация носителей у катода), d_k (ширина приконтактного барьера), D_k^* (прозрачность катода), E_F (положение квазиуровня Ферми) [4,5]: $n_{k0}=2.48\cdot10^8\,\mathrm{cm}^{-3}$, $E_F=0.38\,\mathrm{sB}$, $d_k=5.4\cdot10^{-8}\,\mathrm{cm}$, $D_k^*=10^{-5}-10^{-4}\,\mathrm{sB}$.

Как видно из рис. 1, пройдя участок медленного роста, ток вновь начинает подниматься, т.е. происходит термополевая ионизация ловушек. С целью выяснения справедливости этого механизма в исследуемых образцах монокристаллов $PbGa_2Se_4$ использована теория Пула—Френкеля [6], согласно которой

$$\sigma = \sigma_0 \exp(\beta \sqrt{F}).$$

Здесь F — электрическое поле, σ_0 — электропроводность при F=0 или в области выполнения закона Ома,

Рис. 2. Зависимость α от U при $T=181\,\mathrm{K}$ для образца монокристалла PbGa₂Se₄.

Рис. 3. Зависимость $\lg \sigma$ от \sqrt{F} для монокристалла PbGa₂Se₄ при различных температурах T, K: I-125, 2-161, 3-181, 4-198, 5-230, 6-248.

Рис. 4. Зависимость β от $10^3/T$ для PbGa₂Se₄.

 σ — электропроводность в сильных электрических полях ($F\neq 0$), $\beta=\frac{\sqrt{e^3}}{kT\sqrt{\pi\varepsilon\varepsilon_0}}$ — коэффициент Френкеля, e— заряд электрона, ε — диэлектрическая проницаемость полупроводника.

На рис. 3 приведена зависимость $\lg \sigma = f(\sqrt{F})$ для структуры In–PbGa₂Se₄–In при различных температурах. Нетрудно заметить, что наклон β прямых $\lg \sigma = f(\sqrt{F})$ увеличивается с понижением температуры (рис. 4). Это означает, что при высоких электрических полях ионизация ловушек происходит только за счет температуры. По экспериментальному значению β определена величина ε для PbGa₂Se₄, которая оказалась равной 8.4.

Список литературы

- [1] Б.Г. Тагиев, О.Б. Тагиев, Р.Б. Джаббаров, Н.Н. Мусаева. Неорг. матер., **35**, 33 (1999).
- [2] Б.Г. Тагиев, Н.Н. Мусаева, Р.Б. Джаббаров. ФТП, 33, 39 (1999).

- [3] А.Н. Зюганов, С.В. Свечников. Инжекционно-контактные явления в полупроводниках (Киев, Наук. думка, 1981).
- [4] З.В. Беришвили, А.Н. Зюганов, С.В. Свечников, П.С. Смертенко. Полупроводн. техн. и микроэлектрон., № 28, 23 (1978).
- [5] А.Н. Зюганов, П.С. Смертенко, Е.П. Шульга. Полупроводн. техн. и микроэлектрон., № 29, 48 (1979).
- [6] Я.И. Френкель. ЖЭТФ, 8, 1292 (1938).

Редактор Л.В. Беляков

Features of the current in PbGa₂Se₄ single crystals

B.G. Tagiev, N.N. Musayeva, R.B. Jabbarov

Institute of Physics, Azerbaijan Academy of Sciences 370143 Baku, Azerbaijan

Abstract Results of an inverstigation of volt-ampere characteristics in PbGa₂Se₄ single crystals with resistivity of $10^{10}-10^{12}$ Ohm \cdot cm, obtained by a Bridgman-Stockbarger method are presented. Value of the majority carrier mobility ($\mu=14\,\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$) calculated by a differential method of the analysis of the volt-ampere characteristic makes it possible to evaluate a number of parameters: the carrier concentation at the cathode, $n_{k0}=2.48\cdot10^8\,\mathrm{cm}^{-3}$, the width of a contact barrier, $d_k=5.4\cdot10^{-8}\,\mathrm{cm}$, the transparency of the cathode $D_k^*=10^{-5}-10^{-4}\,\mathrm{eV}$, the position of the quazi-Fermi level $E_F=0.38\,\mathrm{eV}$. It has been found that high electrical fields provide the current conductivity in PbGa₂Se₄ in accordance with the Pool-Frenkel effect. The dielectric constant calculated from the values of Frenkel's factor is equal to 8.4.