Сверхизлучение Дике в квантовых гетероструктурах при оптической накачке

© А.И. Климовская, Е.Г. Гуле, Ю.А. Дрига

Институт физики полупроводников Национальной академии наук Украины 03028 Киев, Украина

(Получена 5 декабря 2000 г. Принята к печати 11 июля 2001 г.)

1. Введение

В гетероструктурах с квантовыми ямами методом инжекции или оптической накачки легко создать высокие плотности экситонов — диполей. В условиях, когда расстояние между диполями становится меньше или порядка длины волны излучения, но достаточно большое, чтобы пренебречь диполь-дипольным взаимодействием, в поле электромагнитной волны может происходить их спонтанная фазировка, приводящая к формированию сверхизлучения Дике (СИ) [1]. СИ исследовалось на многих объектах [2]. В последние годы интерес к СИ связан с разработкой длинноволновых лазеров на квантовых InGaAs-гетероструктурах. В работах [3–5] исследовалось СИ и его особенности на In_{0.15}Ga_{0.85}As-структуре при накачке током.

В настоящей работе приведены результаты исследования СИ в подобных структурах с разными параметрами роста (концентрацией In, толщиной квантовой ямы, легированием) при оптической накачке. Показано, что при уровнях возбуждения < 17 мВт/мм² спектры удовлетворительно описываются зависимостью, характерной для СИ. Высказана предположительная модель влияния δ-легирования подложки на СИ.

2. Экспериментальные результаты и их обсуждение

Исследованы спектры спонтанного излучения гетероструктур с одиночной квантовой ямой (КЯ) In_xGa_{1-x}As в GaAs, выращенных методом MOCVD (газофазной эпитаксии из металлорганических соединений). Толщины квантового слоя были в пределах d = 70 - 100 Å, содержание атомов In x = 0.16 - 0.35. Некоторые образцы содержали в подложке на расстоянии 300 Å от КЯ δ (Ge)легированный слой. Оптическая накачка проводилась Не-Ne-лазером (длина волны 6328 Å), максимальная мощность пучка составляла ~ 17 мВт/мм². Спектры фотолюминесценции (ФЛ) регистрировалиь на модифицированном комплексе КСВУ-23 при температуре ~ 100 К. Возбуждающий поток ослаблялся нейтральными фильтрами. Спектры снимались с поверхности образцов, специальных мер для подавления лазерной генерации не предпринималось. Однако слабое изменение внешнего квантового выхода и формы спектра с изменением интенсивности возбуждения позволяет сделать вывод, что лазерная генерация отсутствует.

На рисунке показаны спектры спонтанного излучения I(E) при разных уровнях возбуждения: для образца S1 с d = 84 Å, x = 0.16 и для образца S2 с d = 73 Å, x = 0.35, содержащего δ -легированный слой. Представленные на рисунке спектры ФЛ образца S1 и низкоэнергетическое "крыло" спектров ФЛ образца S2 аппроксимировались зависимостью

$$I \approx A/\operatorname{ch}\left(\pi\tau_N \frac{E-E_0}{\hbar}\right),\tag{1}$$

где $\hbar = h/2\pi$ — постоянная Планка, E_0 — спектральное положение максимума интенсивности (I_{max}), τ_N — время спонтанного перехода кластера в невозбужденное состояние. Время τ_N выражается формулой [4]

$$\tau_N = \tau_i / (N\mu + 1). \tag{2}$$

Здесь N — число диполей в кластере, τ_i — время излучения одиночного диполя, μ — фактор формы излучателя. Для области излучения цилиндрической формы (наш случай) форм-фактор равен [6]

$$\mu = 3\lambda^2 / 8\pi S,\tag{3}$$

где λ — длина волны излучения, S — основание цилиндра.

Спектры фотолюминесценции гетероструктур с одиночной квантовой ямой $\ln_x Ga_{1-x}$ As при разных уровнях возбуждения. Образец S2: $\ln_{0.35}$ Ga_{0.65}As, d = 73 Å, δ (Ge)-легирование, уровень возбуждения (сверху вниз) — 17, 6.8, 1.14, 0.374 мВт/мм²; образец S1: $\ln_{0.16}$ Ga_{0.84}As, d = 84 Å, уровень возбуждения (сверху вниз) — 17, 11.22, 5.61, 3.4, 1.14 мВт/мм². Штриховая линия — аппроксимация с использованием выражения (1).

Полученная экспериментально форма спектра, которая удовлетворительно описывается выражением (1) (см. рисунок, штриховая линия), свидетельствует о том, что основная часть излучения сформирована СИ, хотя присутствует доля некогерентного излучения.

По наклону низкоэнергетической части спектров была построена зависимость τ_N от уровня возбуждения. Изменение мощности от 0.35 до 17 мВт/мм² заметно не изменяло τ_N . Так, для образца S1 $\langle \tau_N^{(1)} \rangle \approx (64.73 \pm 2.69) \, \text{фc}, \lambda^{(1)} = 918 \, \text{нм}$ и для S2 $\langle \tau_N^{(2)} \rangle \approx (38.39 \pm 3.92) \, \text{фc}, \lambda^{(2)} = 992 \, \text{нм}.$

В условиях, когда форма спектра в основном определяется сверхизлучением, $N\mu \gg 1$, $\tau_N = \tau_i/N\mu$. Подставляя экспериментальные значения τ_N и λ для S1 и S2 и учитывая одинаковую геометрию наблюдения, получаем, что τ_i/N для разных образцов различается в ~ 1.69 раза. Причинами такого различия являются различия τ_i и N. Различие τ_i можно объяснить исходя из представлений о качестве и количестве дефектов, которые формируются в структурах такого типа. С ростом концентрации дефектов (формирование дефектов обусловлено несоответствием параметров решетки и толщиной квантового слоя, превышающего критическую толщину [7]) в такой системе резко снижается время жизни носителей ($au_i^{(1)} \gg au_i^{(2)}$). Однако если исходить из полуширины линии, то времена жизни для данных образцов различаются примерно в 3 раза, в то время как отношения τ_i/N различаются лишь в 1.69 раза. Это, очевидно, указывает на различие N.

Следует отметить, что в спектрах образца S2 (рисунок) сильно деформировано высокоэнергетическое "крыло" спектра. Очевидно, это вызвано заполнением квантовых подзон электронами δ -слоя. Исходя из этого, в качестве объяснения различия отношений τ_i/N можно предположить, что в присутствии большой концентрации свободных носителей, вызванной δ -легированием в образце S2, взаимодействие диполей с электромагнитным полем волны ослабляется и количество диполей N, формирующих кластер, уменьшается. В предельном случае, когда концентрация свободных носителей $n \to \infty$, $N \to 0$ и $\tau_N \to \tau_i$, при этом СИ переходит в нормальное спонтанное излучение независимых диполей.

Избыток свободных носителей в значительной мере ослабляет связь между диполями, в результате чего уменьшается доля излучения, сформированная СИ, и увеличивается доля обычного спонтанного излучения.

Авторы благодарят проф. В.Г. Литовченко и проф. П.М. Томчука за плодотворное обсуждение результатов.

Список литературы

- [1] R.H. Dicke. Phys. Rev., 93, 99 (1954).
- [2] А.В. Андреев, В.И. Емельянов, Ю.А. Ильинский. УФН, 131 (4), 653 (1980).
- [3] С.В. Зайцев, А.М. Георгиевский. ФТП, 32 (3), 366 (1998).

- [4] А.М. Георгиевский, С.В. Зайцев, Н.Ю. Гордеев, В.И. Копчатов, Л.Я. Карачинский, И.И. Новиков, П.С. Копьев. ФТП, 33 (7), 847 (1999).
- [5] С.В. Зайцев, Н.Ю. Гордеев, Z.А. Graham, В.И. Копчатов, Л.Я. Карачинский, И.И. Новиков, D.Z. Huffaker, П.С. Копьев. ФТП, **33** (12), 1456 (1999).
- [6] R. Friedberg, S.R. Hartmann. Phys. Rev. Lett. A, 37, 285 (1971).
- [7] N.N. Grigor'ev, E.G. Gule, A.I. Klimovskaya, Yu.A. Korus, V.G. Litovchenko. Ukr. J. Phys., 45 (7), 853 (2000).

Редактор Л.В. Шаронова

Dicke superradiation in quantum heterostructures at optical pump

A.I. Klimovskaya, E.G. Gule, Yu.A. Dryha

Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine

Abstract Spontaneous radiation spectra as functions of optical pumping in quantum heterostructures GaAs/In_xGa_{1-x}As/GaAs have been studied. Some of heterostructures have the δ (Ge)-layer in substrate. Spectra of samples without the δ -layer and low–energy "shoulder" of the spectra of δ -doped samples were described by the Dicke superradiation dependence. In δ -doped heterostructures a high-energy "tail" was observed, which might be a result of the first quantum subband populating by electrons.