Оптическое поглощение в ($Pb_{0.78}Sn_{0.22}$)_{1-X}In_XTe (X = 0.001 - 0.005)

© А.Н. Вейс

Санкт-Петербургский технический университет, 195251 Санкт-Петербуг, Россия

(Получена 18 июня 2001 г. Принята к печати 20 июня 2001 г.)

Исследованы спектральные зависимости коэффициента поглощения в $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$ (X = 0.001-0.005) при T = 300 K. Выявлены асимметричные полосы дополнительного поглощения α_0 и α_1 , обладающие резкими красными границами. Определены оптические энергии локализованных уровней и их полуширина. Высказаны предположения об их природе.

В последнее время значительно возрос интерес к изучению особенностей энергетического спектра и свойств $Pb_{0.78}Sn_{0.22}Te$, легированного индием [1–8]. В этих исследованиях были обнаружены новые эффекты, для объяснения которых были привлечены представления о прыжковой проводимости по примесным состояниям индия, а также о самокомпенсации донорного действия примеси. Эти эффекты должны сопровождаться существенными изменениями в энергетическом спектре $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe.$ Такие изменения могли бы быть обнаружены при исследовании спектров оптического поглощения в $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$. Однако подавляющая часть результатов, содержащихся в [1–8], была получена при помощи электрофизических методов исследований, а возможности оптических методов в полной мере использованы не были. О характере возможных изменений в энергетическом спектре $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$, возникающих в условиях прыжковой проводимости или вследствие самокомпенсации донорного действия примеси, невозможно судить и на основании имеющихся в литературе данных [9,10] об оптических свойствах $Pb_{1-y}Sn_yTe:In$. Эти данные не полны, а интерпретация их противоречива.

Поэтому в настоящей работе было выполнено исследование спектральных зависимостей коэффициента поглощения α в (Pb_{0.78}Sn_{0.22})_{1-X}In_XTe с низкими концентрациями свободных электронов с целью изучения особенностей его энергетического спектра.

Использованные в работе образцы были приготовлены методом горячего прессования. Методика приготовления и отжига образцов детально описана в [2]. Концентрация индия в шихте X не превышала 0.005. При таких концентрациях введенного индия, согласно [11], можно не опасаться заметного влияния вводимой примеси на такие параметры энергетического спектра Pb_{0.78}Sn_{0.22}Te, как ширина запрещенной зоны E_g и эффективные массы свободных носителей тока. Холловские концентрации электронов $n_{\rm H}$ в исследованных образцах не превосходили $3.6 \cdot 10^{17}$ см⁻³. Все эксперименты выполнены при T = 300 K.

Некоторые из полученных в работе результатов представлены на рис. 1. Как видно из рис. 1, в спектрах $\alpha(\hbar\omega)$ исследованных твердых растворов присутствуют две полосы дополнительного поглощения α_0 и α_1 с резки-

ми красными границами, расположенными при энергиях квантов $\hbar\omega$, равных ≈ 0.09 и ≈ 0.05 эВ. Несимметричная форма зависимостей $\alpha_0(\hbar\omega)$ и $\alpha_1(\hbar\omega)$, а также наличие красных границ у обеих составляющих дополнительного поглощения позволяют считать, что эти полосы обусловлены оптическими переходами электронов из локализованных состояний E_0 и E_1 , расположенных в запрещенной зоне, в разрешенные состояния зоны проводимости (см. энергетическую схему на рис. 1).

Энергетическое положение уровней, ответственных за появление особенностей α_0 и α_1 в спектрах $\alpha(\hbar\omega)$, было определено при помощи расчета коэффициента дополнительного поглощения. Для этого частотные зависимости $\alpha_0 + \alpha_1$ были выделены из экспериментальных кривых посредством вычитания экстраполированного в коротковолновую область поглощения свободными носителями тока. В качества примера на рис. 1 представлены полученные таким образом результаты для образца с X = 0.005.

Расчет спектральных зависимостей $\alpha_0 + \alpha_1$ был выполнен по формуле (2) работы [12], позволяющей найти энергетическое положение локализованных центров и оценить полуширину примесных полос Г. Необходимые для расчета величины энергий Ферми *E*_F были опрелелены в рамках кейновской молели непараболичности по формуле (6.27) работы [13]. При этом были использованы параметры энергетического спектра Pb_{0.78}Sn_{0.22}Te, взятые из [7]. Корректность использования указанных параметров была подтверждена посредством анализа зависимостей $\alpha(\hbar\omega)$ в области края фундаментальной полосы. Оказалось, что величины коэффициента поглощения в исследованных образцах в области края фундаментальной полосы соответствуют имеющимся экспериментальным данным для "чистого" Pb_{0.8}Sn_{0.2}Te, без индия [14], а ширина запрещенной зоны в них составляет 0.20 ± 0.01 3B.

Результаты расчета зависимостей $\alpha_0(\hbar\omega)$ и $\alpha_1(\hbar\omega)$ представлены на рис. 1 кривыми 6–8. Хорошее согласие между результатами расчета и экспериментальными точками позволило определить величины энергий $E_0^{\text{орt}}$ и $E_1^{\text{орt}}$ и оценить полуширину полос Γ_0 и Γ_1 . Оказалось, что в исследованных образцах величины $E_0^{\text{орt}}$ и $E_1^{\text{орt}}$ составляют –(0.09 ± 0.01) и –(0.050 ± 0.005) эВ соответственно, а полуширина локализованных полос Γ_0 и Γ_1 не превы-

Рис. 1. Спектральные зависимости коэффициента поглощения α в (Pb_{0.78}Sn_{0.22})_{1-X}In_XTe при T = 300 К. $X(n_{\rm H}^* \cdot 10^{-17} \,{\rm cm}^{-3})$: I = 0.001 (2.1), 2 = 0.003 (3.6), 3.4 = 0.005 (1.7); толщина образцов d, μ m: I = 8.9, 2 = 3.4, 3 = 2.6, 4 = 5.7. Спектр дополнительного поглощения в (Pb_{0.78}Sn_{0.22})_{0.995}In_{0.005}Te. Точки (5) = эксперимент, линии — расчет по формуле (2) работы [12] при $E_0^{\rm opt} = 0.09$ эВ, $E_1^{\rm opt} = 0.05$ эВ, $\Gamma_0 = \Gamma_1 = 8$ мэВ: $6 = \alpha_0(\hbar\omega), 7 = \alpha_1(\hbar\omega), 8 = \alpha_0 + \alpha_1$. Для зависимостей 5-8 значения α увеличены в 10 раз. 9 — экспериментальные данные [14] для "чистого" Pb_{0.8}Sn_{0.2}Te, без индия. На вставке — энергетическая схема (Pb_{0.78}Sn_{0.22})_{1-X}In_XTe. Стрелками обозначены наблюдаемые оптические переходы, связанные с перезарядкой локализованных состояний E_0 и E_1 .

Рис. 2. Зависимости интенсивности полос дополнительного поглощения $\alpha_0^{\max}(I)$ и $\alpha_1^{\max}(2)$ от содержания индия X в $(Pb_{0.78}Sn_{0.22})_{1-X}In_X$ Те при T = 300 К.

шает 8 мэВ. Отметим, что уширение примесных полос в твердых растворах по сравнению с их шириной в бинарных халькогенидах свинца наблюдалось и ранее, в $Pb_{1-X}Ge_XTe: In [12]$ и в $PbSe_{1-X}S_X: TI [15]$ и связывалось с влиянием неэквивалентности кристаллического окружения дефекта. При помощи расчета удалось оценить и величины интенсивностей полос α_0 и α_1 . Соответствующие данные показаны на рис. 2.

Переходя к обсуждению возможной природы особенностей, наблюдаемых в спектрах $\alpha(\hbar\omega)$ исследованных твердых растворов, прежде всего отметим, что полосы α_0 в $Pb_{1-Y}Sn_YTe$ ранее не наблюдались. Их интенсивность, как это следует из рис. 2, растет пропорционально количеству индия в шихте X. Поэтому полосы α_0 естественно связать с оптической перезарядкой индия. В пользу такого предположения свидетельствуют и результаты, представленные на рис. 3. На этом рисунке показаны зависимости энергетического положения примесного уровня индия E_0 в Pb_{1-Y}Sn_YTe: In от содержания олова Y в шихте, полученные на основании исследования оптического поглощения (E_0^{opt}) и явлений переноса (E_0^{therm}) . Значение E_0^{opt} в PbTe, представленное на этом рисунке, получено посредством линейной экстраполяции экспериментальных данных [16] для образцов с электронным типом проводимости из высокотемпературной области к Т = 300 К. Корректность подобной экстраполяции установлена в [16]. Значения E_0^{therm} , приведенные на рис. 3, взяты из работ [11,17] и относятся к 0 К. Из рис. 3 видно, что скорости изменения E_0^{opt} и E_0^{therm} с составом в Pb_{1-Y}Sn_YTe близки и составляют $dE_0/dY \approx 0.3$.

В отличие от уровня E_0 , уровень E_1 в $Pb_{1-Y}Sn_YTe$ не наблюдался ранее ни в оптических экспериментах, ни при изучении явлений переноса. Поэтому предположения о возможной природе полос α_1 , обнаруженных в $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$, в первую очередь должны основываться на особенностях свойств изучаемого материала. В этой связи необходимо отметить следующее. Анализ величин холловских концентраций электронов n_H показывает, что донорные центры индия в исследованных образцах могут быть не единственными.

Действительно, в примесной полосе индия в соответствии с данными [18] содержится по два состояния на каждый атом примеси. Поэтому независимо от величины электронной корреляционной энергии U на примесном центре индия при $U \leq 0$ [18], в отсутствие дополнительных доноров и акцепторов, величины $E_{\rm F}$ не могут превосходить значения $E^{\rm therm}$. Величина E_0^{therm} в $(Pb_{0.78}Sn_{0.22})_{1-X}In_X$ Те может быть оценена в предположении, что разность $|E_0^{\text{opt}} - E_0^{\text{therm}}|$ в $Pb_{1-Y}Sn_YTe:In$ не зависит от Y и составляет, как и в PbTe:In, 0.045 эВ [16]. В таком случае величина E_0^{therm} в $(Pb_{0.78}Sn_{0.22})_{1-X}In_X$ Те должна составлять -0.045 эВ, а холловские концентрации электронов не должны превышать $n_{\rm H}^* = 2.4 \cdot 10^{17} \,{\rm cm}^{-3}$. Отметим, что приведенная выше оценка E_0^{therm} в ($Pb_{0.78}Sn_{0.22}$)_{1-X}In_XTe соответствует данным [1], где было показано, что величины E_0^{therm} в изучаемых твердых растворах при $T = 300 \,\text{K}$ составляют -0.05 эВ.

Рис. 3. Зависимости энергетического положения примесного уровня E_0 , связанного с индием, в $Pb_{1-Y}Sn_YTe:In$ от содержания олова Y в шихте, полученные на основании анализа данных по исследованию оптического поглощения (1,2) и явлений переноса (3,4). 1 — данные настоящей работы, 2 — [16], 3 - [17], 4 - [11]. T,K: 1,2 — 300, 3 - 4.2, 4 - 0.

Если обратиться к величинам *n*_H в исследованных образцах, то можно видеть, что $n_{\rm H}$ в ($Pb_{0.78}Sn_{0.22}$)_{0.997}In_{0.003}Te ($n_{\rm H} = 3.6 \cdot 10^{17} \,{\rm cm}^{-3}$) cyщественно выше, чем $n_{\rm H}^*$. Отмеченное несоответствие между n_H и n_H^{*} может быть следствием двух причин. Во-первых, можно предполагать, что примесь индия в $(Pb_{0.78}Sn_{0.22})_{1-X}In_X$ Те находится в двух зарядовых состояниях: In^- и In^0 (здесь и далее в обозначениях [18]). В рамках такой интерпретации экспериментальных данных, в соответствии с результатами [19], полоса α_0 должна быть связана с процессом оптической перезарядки индия $In^- \rightarrow In^0$, а $\alpha_1 - In^0 \rightarrow In^+$. Во-вторых, все исследованные образцы могут быть самокомпенсированными. Согласно [1], компенсация донорного действия индия осуществляется за счет образования вакансий в подрешетке металла V_m. При этом следует учесть, что индий был введен в исследованные образцы в виде примеси замещения. Поэтому можно предполагать, что вакансии в подрешетке металла могут возникать не только в виде дефектов по Шоттки, но и в виде дефектов по Френкелю. В таком случае в исследованных образцах может появиться заметная по величине концентрация межузельного металла, который, как известно [20], является однократным донором. В этом случае полоса α₁ может быть связана либо с межузельным металлом, либо с комплексами, включающими межузельный металл.

Полученные к настоящему времени данные не позволяют отдать предпочтение какому-либо из высказанных выше предположений. В пользу первого из них свидетельствует возрастание интенсивности полос α_1 при увеличении X. В пользу второго — отсутствие корреляции между интенсивностью полос α_1 и величинами $E_{\rm F}$.

Автор признателен С.А. Немову за предоставленные для исследований образцы.

Список литературы

- С.А. Немов, Ю.И. Равич, М.К. Житинская, В.И. Прошин. ФТП, 26, 1493 (1992).
- [2] С.А. Немов, Ю.И. Равич, А.В. Березин, В.Э. Гасумянц, М.К. Житинская, В.И. Прошин. ФТП, 27, 299 (1993).
- [3] Ю.И. Равич, С.А. Немов, В.И. Прошин. ФТП, 29, 1448 (1995).
- [4] Т.Г. Абайдулина, С.А. Немов, В.И. Прошин, Ю.И. Равич. ФТП, 30, 2173 (1996).
- [5] С.А. Немов, В.И. Прошин, Т.Г. Абайдулина. ФТП, 30, 1285 (1996).
- [6] С.А. Немов, В.И. Пришвин, Ю.И. Равич. ФТП, **30**, 2173 (1996).
- [7] А.Н. Вейс, С.А. Немов. ФТП, 32, 1047 (1998).
- [8] С.А. Немов, В.Э. Гасумянц, В.И. Прошин, Ю.И. Равич. ФТП, 34, 926 (2000).
- [9] И.А. Драбкин, Ю.Я. Елисеева, Г.Ф. Захарюгина, И.В. Нельсон, Ю.И. Равич. ФТП, 8, 1947 (1974).
- [10] А.Н. Вейс, В.И. Кайданов, Ю.И. Равич, И.А. Рябцева, Ю.И. Уханов. ФТП, 10, 104 (1976).
- [11] Н.А. Ерасова, Б.А. Ефимова, Г.Ф. Захарюгина, В.И. Кайданов. Неорг. матер., 14, 870 (1978).

- [12] Т.В. Бочарова, А.Н. Вейс, Н.А. Ерасова, В.И. Кайданов. ФТП, **16**, 1462 (1982).
- [13] Ю.И. Равич, Б.А. Ефимова, И.А.Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца: PbTe, PbSe, PbS (М., Наука, 1968).
- [14] И.А. Драбкин, Л.Я. Морговский, И.В. Нельсон, Ю.И. Равич. ФТП, 6, 1323 (1972).
- [15] А.Н. Вейс, В.И. Кайданов, С.А. Немов. ФТП, 14, 1054 (1980).
- [16] А.Н. Вейс, С.А. Немов. ФТП, 16, 1130 (1982).
- [17] В.Г. Голубев, Н.И. Гречко, С.Н. Лыков, И.А. Черник. ФТП, 11, 1704 (1977).
- [18] В.И. Кайданов, Ю.И. Равич. УФН, 145, 51 (1985).
- [19] С.А. Рыков. Автореф. докт. дис. (СПб., Изд-во СПбГТУ, 1999).
- [20] H. Heinrich. Proc. Int. Summer School on Narrow-Cap Semiconductors: Physics and Applications (Nimes, France, 1979) p. 407.

Редактор Л.В. Беляков

Optical absorption in $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$ (X = 0.001-0.005)

A.N. Veis

St.Petesburg State Tachnical University, 195251 St.Petersburg, Russia

Abstract The spectral dependencies of the absorption coefficient of a $(Pb_{0.78}Sn_{0.22})_{1-X}In_XTe$ (X = 0.001-0.005) were investigated at T = 300 K. Asymmetric additional absorption bands α_0 and α_1 , characterized by sharp red edges, were observed. The optical energies of localized levels and their half-widths were determined. Assumptions on the nature of peculiarities observed were formulated.