Влияние ионизации на поведение кремния в арсениде галлия при радиационном отжиге

© М.В. Ардышев[¶], В.М. Ардышев

Сибирский физико-технический институт им. В.Д. Кузнецова при Томском государственном университете, 634050 Томск, Россия

(Получена 13 февраля 2001 г. Принята к печати 25 мая 2001 г.)

Методом вольт-фарадных характеристик исследовано поведение кремния, имплантированного в GaAs, после электронного отжига в режиме $7.6 \text{ Br} \cdot \text{cm}^{-2}/10 \text{ c.}$ Электронный пучок воздействовал как на имплантированную, так и на тыльную поверхности пластин. Контрольные образцы отжигали термически в печи в режиме $800^{\circ}\text{C}/30$ мин. Показано, что при электронном отжиге имплантированной стороны коэффициент диффузии *D* более чем на 3 порядка больше, чем при термическом отжиге, и почти на 2 порядка больше, чем при электронном отжиге тыльной поверхности. Предполагается, что это обусловлено длительным временем существования высокой стационарной концентрации неравновесных электронов и дырок из-за их пространственного разделения.

В [1,2] обнаружено, что при радиационном отжиге GaAs наблюдаются существенно бо́льшие значения коэффициента диффузии и степени электрической активации имплантированного ²⁸Si по сравнению с термическим отжигом (ТО) при тех же температурах. Предполагается, что это обусловлено влиянием генерируемых во время радиационного отжига "электронных возбуждений" (неравновесные носители заряда, оже-процессы, плазмоны) на перераспределение примеси. Однако данное предположение нельзя считать однозначным. Во-первых, в этом случае необходимо принять длительное время существования высокой концентрации неравновесных носителей заряда (HH3), более 10¹⁹ см⁻³, что многими авторами подвергается критике [3]. Во-вторых, наблюдаемые эффекты могут быть обусловлены радиационностимулированной диффузией, которая при радиационном отжиге, возможно, протекает иначе, чем при термическом, из-за значительного различия скоростей нагрева материала.

В этой связи цель настоящей работы состояла в выявление роли ионизационно-термических эффектов в диффузионном перераспределении и электрической активации кремния, имплантированного в арсенид галлия.

Исследования выполнены на пластинах полуизолирующего нелегированного GaAs с удельным сопротивлением более $10^7 \text{ Om} \cdot \text{ cm}$. Осуществляли имплантацию ионов ²⁸Si с энергией 50 кэВ дозой $6.25 \cdot 10^{12} \text{ cm}^{-2}$, а затем с энергией 75 кэВ дозой $1.88 \cdot 10^{12} \text{ cm}^{-2}$ при комнатной температуре. Для исключения каналирования ионов принимали меры, описанные в [1]. Перед отжигом на обе стороны пластин плазмохимическим способом осаждали пленку SiO₂ толщиной 0.1-0.3 мкм. Электронный отжиг (ЭО) выполняли в установке "Модуль" с плотностью мощности 7.6 Вт $\cdot \text{ cm}^{-2}$ в течение 10 с в вакууме, причем электронным пучком воздействовали как на имплантированную сторону пластин, так и на тыльную. Контрольный

термический отжиг осуществляли в печках накаливания при температуре 800°С в течение 30 мин в потоке водорода. После удаления диэлектрика измеряли концентрационные профили электронов методом вольт-фарадных характеристик на барьерах Шоттки, окруженных омическими контактами.

На рисунке приведены концентрационные профили электронов в ионно-легированных слоях GaAs:Si после ЭО с имплантированной стороны (кривая 1) и тыльной стороны пластины (кривая 2), а также после ТО (кривая 3); кривая 4 — профиль концентрации внедренного кремния, рассчитанный с использованием параметров распределения R_p и ΔR_p , определенных методом масс-спектроскопии вторичных ионов. Экспериментальные профили легирования обрабатывали методом Больцмана–Мотано [1,4].

Профили концентрации электронов в GaAs: Si после электронного отжига в режиме 7.6 Вт \cdot см⁻²/10 с при воздействии пучка на имплантированную (1) и тыльную (2) поверхности пластин, после термического отжига в режиме 800°С/30 мин (3), а также расчетный профиль внедренного кремния (4) при имплантации ионов с энергией 50 кэВ, дозой 6.25 \cdot 10¹² см⁻² и затем с энергией 75 кэВ, дозой 1.88 \cdot 10¹² см⁻² (1).

[¶] E-mail: ard.rff@elefot.tsu.ru

Вид и режим отжига	Коэффициент диффузии Si $D, \ \mathrm{cm}^2 \cdot \mathrm{c}^{-1}$	Степень активации Si η,%
TO(800° C/30 мин) ЭO(7.6 Вт · см ⁻² /10 с):	$2.0 \cdot 10^{-15}$	34.3
имплантированная поверхность	$1.6 \cdot 10^{-12}$	40.1
тыльная поверхность	$5.9\cdot10^{-14}$	52.6

Таблица 1. Параметры концентрационных профилей электронов в GaAs: Si после различных видов отжига

В табл. 1 представлены параметры экспериментальных профилей электронов.

Из рисунка и табл. 1 следует, что после ЭО имплантированной стороны пластины значения коэффициента диффузии D и степени электроактивации η больше, чем после отжига тыльной стороны, которые в свою очередь больше, чем после ТО. Следует отметить, что при исследуемом ЭО за характерное время $\tau_c \ge 10^{-3}$ с ($\tau_c = d^2/\theta$, где d — толщина пластины, θ — коэффициент температуропроводности) тепловое поле распространяется на всю толщину пластины, так что температура на обеих сторонах будет практически одинаковой.

Из решения уравнения теплового баланса получено, что температура насыщения T_s , время достижения насыщения t_s и скорость нагрева пластин dT/dt составляют соответственно 803°С, 2.94 с и 741°С · с⁻¹. Так как $t_s \gg \tau_c$, скорость нагрева на обеих поверхностях пластины практически одинакова. Следует отметить, что в случае TO значение dT/dt составило $\sim 2.8^{\circ}\mathrm{C}\cdot\mathrm{c}^{-1}$. Если предположить, что во время ЭО тыльной стороны происходит миграция дефектов в объем GaAs, то различие в коэффициентах диффузии при ЭО и при ТО обусловлено диффузией примеси, стимулированной дефектами. Есть основания считать, что данный процесс является следствием высокой скорости нагрева материала при радиационном отжиге, благодаря чему отжиг имплантационных нарушений и активация примеси происходят одновременно [5]. Однако радиационно-стимулированная диффузия приводит к незначительному увеличению D (в 4 раза — см. табл. 1). Учитывая, что в случае ЭО имплантированной стороны увеличение D составляет несколько порядков и ННЗ генерируются в слое локализации внедренной примеси, то наиболее вероятной причиной наблюдаемых высоких значений D и η являются ионизационные эффекты.

Ранее в качестве механизмов ускорения диффузии возбуждением электронной подсистемы предлагались: механизм рекомбинационной θ -вспышки В.М. Ленченко [6], механизм инверсных потенциалов Б.Л. Оксенгендлера [7], а также механизм Корбетта–Бургуэна [8] и другие [9]. Однако каждый из предложенных механизмов имеет те или иные недостатки. Кинетику накопления концентрации HH3 Δn представим в виде

$$\frac{\partial \Delta n}{\partial t} = G - \frac{\Delta n}{\tau} - \gamma (\Delta n)^3 + D_{n,p} \frac{\partial^2 \Delta n}{\partial x^2}, \qquad (1)$$

где G — темп генерации, τ — время жизни HH3, определяемое их рекомбинацией на центрах с глубокими уровнями, γ — коэффициент оже-рекомбинации, $D_{n,p}$ — коэффициент амбиполярной диффузии HH3.

В процессе исследуемого ЭО реализуется стационарная концентрация ННЗ, т.е. $\partial \Delta n / \partial t = 0$. При малых темпах генерации убыль концентрации ННЗ будет определяться вторым членом в правой части (1), при больших — третьим. Доминирование оже-рекомбинации произойдет, когда $\gamma (\Delta n)^3 > \Delta n / \tau$. Принимая $\tau = 10^{-8}$ с, $\gamma = 3 \cdot 10^{-31}$ см⁶ · с⁻¹ [10], получим $\Delta n > 2 \cdot 10^{19}$ см⁻³. Для обеспечения такой концентрации ННЗ необходимо выполнение условия $G \gtrsim \gamma (\Delta n)^3 = 2.4 \cdot 10^{27}$ см⁻³ · с⁻¹. Оценку $G = \sigma_i N_0 j/e$, где σ_i — сечение ионизации, $N_0 = 4.45 \cdot 10^{22}$ см⁻³ — концентрация атомов полупроводника, j — плотность тока электронов ($j = 7.6 \cdot 10^{-4}$ А/см²), e — заряд электрона, выполняли по [11]. Значение σ_i определяли с помощью выражения

$$\sigma_i = (\langle I \rangle N_0)^{-1} dE/dx, \qquad (2)$$

где $\langle I \rangle$ — средний потенциал ионизации атомов GaAs, dE/dx — удельные потери энергии электронов с учетом обратно рассеянных частиц.

В табл. 2 приведены результаты расчета. Видно, что для реализованного режима ЭО темп генерации существенно меньше значения, при котором доминирует оже-рекомбинация. Поэтому стационарная концентрация ННЗ $\Delta n_{\rm st}$ будет определяться 1-м, 2-м и 4-м членами правой части уравнения (1). Далее учтем, что

Таблица 2. Результаты расчета взаимодействия электронов с GaAs

Энергия электронов <i>E</i> , кэВ	Сечение ионизации $\sigma_i, 10^{-17} \text{ см}^2$	Темп генерации $G, 10^{20} \text{ см}^{-3} \cdot \text{c}^{-1}$
5	8.5	12
10*	5.4	7.5
15	4.2	5.8

Примечание.* В настоящей работе реализован электронный отжиг с энергией электронов в пучке 10 кэВ.

в GaAs подвижность электронов μ_n значительно больше подвижности дырок μ_p , т. е. будет происходить пространственное разделение носителей заряда. Предполагая, что поверхностная рекомбинация незначительна, а также, что на глубине x = 3L (L — диффузионная длина носителей) при температуре отжига T_{ann} концентрация "термических" носителей заряда $n_0(T_{ann})$ равна Δn_{st} , получим следующее выражение для стационарной концентрации HH3:

$$\Delta n_{\rm st} = n_0(T_{\rm ann}) \left[\exp\left(\frac{eU_D}{kT_{\rm ann}} \frac{\mu_n + \mu_p}{\mu_n - \mu_p}\right) - 1 \right], \quad (3)$$

где $n_0(T_{ann}) = [N_c(T_{ann})N_v(T_{ann})]^{1/2} \exp[-\Delta E(T_{ann})/2kT_{ann}],$ $N_c(T_{ann})$ и $N_v(T_{ann})$ — плотность состояний в зоне проводимости и в валентной зоне соответственно при температуре отжига T_{ann} , $\Delta E(T_{ann})$ — ширина запрещенной зоны GaAs при T_{ann} , U_D — потенциальный барьер.

Подвижности μ_n и μ_p при $T_{\rm ann} \approx 800^{\circ}$ С будут определяться в основном рассеянием на оптических колебаниях решетки. Оценки показывают, что в этом случае $\mu_n/\mu_p \approx 5$. С другой стороны, $n_0(800^{\circ}$ С) $\approx 10^{17}$ см⁻³. Для выполнения условия $\Delta n_{\rm st} \gtrsim 10 n_0(T_{\rm ann})$ необходимо, чтобы $U_D \approx 2(kT_{\rm ann}/e)$, т.е. при $T_{\rm ann} \approx 800^{\circ}$ С $U_D \approx 0.2$ В. Эта величина представляется разумной.

Таким образом, экспериментально обоснована определяющая роль ионизационно-термических процессов в ускорении диффузии и увеличении степени электрической активации ²⁸Si в имплантированных слоях GaAs при электронном отжиге, а также показано, что наиболее вероятной причиной длительного существования высокой концентрации неравновесных носителей заряда является их пространственное разделение.

Список литературы

- М.В. Ардышев, В.М. Ардышев. Изв. вузов. Физика, 41, 89 (1998).
- [2] М.В. Ардышев, В.М. Ардышев. ФТП, **32**, 1153 (1998).
- [3] А.В. Двуреченский, Г.А. Качурин, Е.В. Нидаев, Л.С. Смирнов. Импульсный отжиг полупроводниковых материалов (М., Наука, 1982).
- [4] A. Bakowski. J. Electrochem. Soc., 127, 1644 (1980).
- [5] А.В. Черняев. Метод ионной имплантации в технологии приборов и интегральных схем на GaAs (М., Радио и связь, 1990).
- [6] В.М. Ленченко. ФТТ, 11, 799 (1969).
- [7] Б.Л. Оксенгендлер. Письма ЖЭТФ, 24, 12 (1976).
- [8] J. Bourgoin, J. Corbett. Phys. Lett. A, 38, 135 (1972).
- [9] Б. Аскаров, А.Ш. Махмудов, Б.Л. Оксенгендлер, М.С. Юнусов. *Радиоактивируемые процессы в кремнии* (Ташкент, Фан, 1977).
- [10] J. Smith. Phys. Rev. B, 3, 4330 (1971).
- [11] И.А. Аброян, А.Н. Андронов, А.И. Титов. Физические основы электронной и ионной технологии (М., Высш. шк., 1984).

Редактор Л.В. Шаронова

Effect of ionization on silicon behavior in gallium arsenide during radiation annealing

M.V. Ardyshev, V.M. Ardyshev

Kuznetsov Siberian Physicotechnical Institute, Tomsk State University, 634050 Tomsk, Russia

Abstract Using the voltage-capacitance method, the behavior of Si that was implanted in GaAs, has been studied after electron annealing $(7.6 \text{ W} \cdot \text{cm}^{-2}/10 \text{ s})$. The electron beam irradiated both implanted and rear plate surfaces. The control samples were annealed thermally in furnace $(800^{\circ}\text{C}/30 \text{ min})$. The coefficient of diffusion *D* during annealing the implanted surface was shown to be more than by 3 orders of magnitude greater than that under thermal annealing, and almost by 2 orders greater as compared to the rear-surface one. It could be caused by long time availability of nonequilibrium electrons and holes stationary concentration because of their space separation.