Эффект Фарадея в Tb₃Ga₅O₁₂ в быстро нарастающем сверхсильном магнитном поле

© Р.З. Левитин, А.К. Звездин*, М. фон Ортенберг**, В.В. Платонов***, В.И. Плис****, А.И. Попов****, Н. Пульман**, О.М. Таценко***

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия * Институт общей физики Российской академии наук, 119991 Москва, Россия ** Институт физики Университета им. Гумбольта, D-10115 Берлин, Германия *** ВНИИЭФ, 607189 Саров, Россия **** Московский государственный институт электронной техники, 103498 Москва, Россия

(Поступила в Редакцию 8 января 2002 г.)

В импульсных магнитных полях до 75 T со скоростью нарастания поля 10^7 T/s измерен эффект Фарадея парамагнитного галлата-граната тербия Tb₃Ga₅O₁₂ на длине волны $\lambda = 0.63 \,\mu$ m при 6 K и ориентации поля вдоль кристаллографического направления (110). Экспериментальные данные сравниваются с результатами теоретических расчетов, учитывающими кристаллические поля, действующие на ион Tb³⁺, а также различные вклады в фарадеевское вращение. Поскольку измерения в импульсных полях проводятся в адиабатически режиме, из сопоставления экспериментальной зависимости фарадеевского вращения с теоретически рассчитанными зависимостями эффекта Фарадея в изотермическом режиме при различных температурах получена зависимость температуры образца от магнитного поля во время действия импульса тока.

Работа поддержана грантом Российского фонда фундаментальных исследований № 00-02-17240.

В настоящее время величина экспериментально достижимых стационарных магнитных полей приближается к 50 T, а поля с более высокой индукцией (их принято называть сверхсильными) генерируются только в импульсном режиме [1].

Эксперименты в сверхсильных магнитных полях вызывают большой интерес, так как в них исследуемые вещества находятся в экстремальных условиях (огромные зеемановские расщепления спиновых и орбитальных степеней свободы, квантовый предел в полупроводниках и полуметаллах, "разрыв" обменных связей в магнитоупорядоченных материалах и нанокластерах). В таких экспериментах осуществляются магнитные превращения, недоступные в других условиях.

Хотя методы генерации импульсных магнитных полей в диапазоне 50-100 T освоены в настоящее время достаточно хорошо, методики измерений в таких полях еще далеки от совершенства. В частности, поскольку скорость изменения поля в экспериментах со сверхсильными полями составляет очень большую величину $(10^7 - 10^8 \text{ T/s})$, недостаточно ясен вопрос о перераспределении энтропии между магнитной подсистемой, кристаллической решеткой и термостатом и, следовательно, о температурном режиме при импульсном намагничивании. Изучению этого весьма актуального с методической точки зрения и интересного физически вопроса посвящена настоящая работа. Для такого исследования целесообразно выбрать материал с достаточно хорошо изученными свойствами и энергетическим спектром магнитной подсистемы. В данной работе в качестве такового был выбран тербиевый галлат со структурой граната $Tb_3Ga_5O_{12}$. Для "слежения" за магнитной подсистемой (и температурой образца) использовался эффект Фарадея, особенности которого в редкоземельных соединениях со структурой граната хорошо изучены [2–4]. Немаловажным аргументом в пользу выбора эффекта Фарадея являлось также то, что в этой методике измерительная часть находится вне магнитного поля, что позволяет минимизировать электромагнитные наводки, возникающие в сверхсильных импульсных магнитных полях.

Кристаллы со структурой граната обладают кубической симметрией. Их кристаллографическая структура является весьма сложной и описывается пространственной группой O_h^{10} [5–7]. Элементарная ячейка граната содержит 160 атомов. Редкоземельные ионы в структуре граната располагаются в шести неэквивалентных додекаэдрических позициях с орторомбической симметрией окружения (точечная группа D_2), различающихся ориентацией локальных осей. Ориентацию локальных осей для всех шести неэквивалентных узлов можно получить поворотами кристаллографической системы координат на угол $\pm \pi/4$ относительно осей [100], [010], [001] (табл. 1).

Низкая симметрия кристаллического окружения редкоземельного иона R^{3+} в структуре граната приводит к максимально возможному снятию вырождения его основного мультиплета. Для некрамерсовского иона Tb^{3+} низкоэнергетическая часть спектра состоит из квазидублетов: основным состоянием является квазиду-

Таблица 1. Ориентация локальных осей симметрии додекаэдрических позиций для шести неэквивалентных положений редкоземельных гранатов

Орт	1	2	3	4	5	6
e _x	[001]	[001]	[100]	[100]	[010]	[010]
e _y	[1Ī0]	[110]	[011]	[011]	[Ī01]	[101]
e _z	[110]	[Ī10]	[011]	[011]	[101]	[101]

Таблица 2. Параметры кристаллического поля галлата-граната тербия [10] (в сm⁻¹)

B 20	B ₂₂	B_{40}	<i>B</i> ₄₂	B ₄₄	B ₆₀	B_{62}	<i>B</i> ₆₄	B ₆₆
-81	169	-2163	249	945	677	-155	1045	-4

блет со щелью 2.5 cm^{-1} , первый возбужденный квазидублет лежит выше основного на 34 cm^{-1} , третий — на 43 cm^{-1} и т.д. [8]. Энергия обменного взаимодействия в редкоземельных галлатах-гранатах мала по сравнению с энергией кристаллического поля (температура Нееля галлата тербия равна $T_N = 0.25 \text{ K}$ [9], что соответствует примерно 0.17 cm^{-1}), поэтому при анализе экспериментальных данных при гелиевых температурах обменное взаимодействие можно не учитывать.

Параметры кристаллического поля, действующего на ион Tb³⁺ в галлате-гранате, были определены различными методами (см. [10,11]). С нашей точки зрения, наиболее адекватным является набор параметров, приведенный в [10] (табл. 2). Этот набор параметров позволяет количественно описать явление пересечения энергетических уровней в спектре иона Tb³⁺, экспериментально наблюдаемое в Tb₃Ga₅O₁₂ в поле, параллельном направлению (110), а также кривые намагничивания вдоль этого направления в полях до 15 T [10]. Одной из задач данной работы была проверка того, насколько приведенные выше параметры кристаллического поля пригодны для описания свойств галлата-граната тербия в более сильных полях (до 75 T).

Необходимо отметить, что в работе [10] намагниченность измерялась в статических полях и, следовательно, в изотермическом режиме. В импульсных магнитных полях, которые использовались в нашей работе, измерения проводятся в адиабатическом режиме. Сопоставляя экспериментальные данные в адиабатическом режиме с результатами (экспериментальными и теоретическими), полученными в изотермическом режиме, можно, как впервые было показано в [12], определить магнитокалорический эффект. Это было второй задачей, которую мы решали в данной работе. Отметим, что изучение магнитокалорического эффекта кроме чисто научного имеет и прикладное значение, поскольку редкоземельные парамагнитные гранаты рассматриваются как перспективные материалы для низкотемпературных магнитных рефрижераторов [13].

1. Теория

1.1. Эффект Фарадея. Угол поворота плоскости поляризации света в Tb₃Ga₅O₁₂ содержит два вклада

$$\alpha_F = \alpha(\mathrm{Tb}) + \alpha_D, \qquad (1)$$

где α (Tb) представляет собой вклад парамагнитных ионов Tb³⁺, а α_D — вклад матрицы, образованной диамагнитными ионами галлия и кислорода. Слагаемое α_D не зависит от температуры и пропорционально магнитному полю *B*,

$$\alpha_D = VB. \tag{2}$$

В качестве постоянной Верде матрицы V в первом приближении можно использовать постоянную Верде иттриевого галлата-граната $V(YGG) = 0.043 \text{ min}/(\text{cm} \cdot \text{Oe})$ [14].

В видимой и ультрафиолетовой областях спектра вклад редкоземельных ионов в фарадеевское вращение определяется в основном разрешенными f-d-электродипольными переходами, за исключением узких спектральных областей вблизи резонансных частот запрещенных f-f-переходов. В общем случае величина α (Tb) включает в себя три слагаемых: парамагнитный вклад, вклад смешивания и диамагнитный вклад [2–4,15]. Диамагнитный вклад линеен по магнитному полю B, существен только в узком спектральном диапазоне вблизи резонансных частот оптических переходов и сводится к перенормировке константы V в (2). Парамагнитный вклад и вклад смешивания, согласно [3], имеют вид

$$\alpha(\mathrm{Tb}) = A\left(M_0 - \frac{g_{J_0}}{2 - g_{J_0}}M_{VV}\right),\qquad(3)$$

где M_0 — намагниченность, связанная с расщеплением уровней основного мультиплета ⁷ F_6 , M_{VV} — ванфлековская поправка к намагниченности [3,4], обусловленная примешиванием в магнитном поле первого возбужденного мультиплета ⁷ F_5 иона Tb³⁺ к основному, $g_{J_0} = 3/2$ — фактор Ланде основного мультиплета этого иона, A — константа, зависящая от частоты падающего излучения и сил осциллятора разрешенных f-d-переходов. Для того чтобы рассчитать $M_0(B)$ и $M_{VV}(B)$ и тем самым вычислить $\alpha_F(B)$, необходимо определить электронную структуру ионов Tb³⁺, которая формируется под воздействием ионного окружения (описываемым гамильтонианом кристаллического поля) и магнитного поля. Актуальным гамильтонианом задачи является [6]

$$\hat{H} = \hat{H}_{\rm cr} + \hat{H}_Z,\tag{4}$$

где

$$\hat{H}_{\rm cr} = \sum_{kqi} B_{kq} \left(C_q^k(i) + C_{-q}^k(i) \right), \tag{5}$$

 C_q^k — неприводимые тензорные операторы [16]; $k = 2, 4, 6; q \leq k;$ суммирование по *i* проводится по всем 4*f*-электронам иона Tb^{3+} . В (4) \hat{H}_Z преставляет собой гамильтониан взаимодействия иона с магнитным полем

$$\hat{H}_Z = \mu_{\rm B}(\mathbf{L} + 2\mathbf{S})\mathbf{B}.$$
 (6)

При расчетах, как уже указывалось, использовался набор параметров кристаллического поля из работы [10] (табл. 2).

По этой схеме были рассчитаны уровни энергии E_n и определены собственные функции ионов Tb³⁺ в широком интервале магнитных полей, параллельных оси (110), при учете наличия неэквивалентных позиций, занимаемых ионами Tb^{3+} в структуре граната (табл. 1). При этом оказалось, что, как уже было отмечено в [10], нижние уровни энергии иона Tb³⁺, расположенного в позиции 1, пересекаются в поле $B \approx 9.5$ Т. Затем были проведены вычисления намагниченности $M_0(B)$ и $M_{VV}(B)$ в Tb₃Ga₅O₁₂ в зависимости от величины магнитного поля при различных температурах ($6 \le T \le 41 \, \text{K}$). Отметим, что величина $M_{VV}(B)$, согласно расчетам, оказалась весьма малой (в полях порядка 100 Т она составляет 1% от $M_0(B)$) и ей в первом приближении можно пренебречь. Далее по формуле (3) вычисляется вклад тербия в эффект Фарадея (в относительных единицах) при различных температурах в изотермическом режиме.

1.2. Магнитокалорический эффект. Поскольку фарадеевское вращение измерялось в адиабатическом режиме, при расчетах необходимо учесть магнитокалорический эффект — изменение температуры образца при намагничивании. Изменение температуры при адиабатическом намагничивании можно рассчитать, решая уравнение адиабаты (см., например, [17])¹

$$S_M(T_0, 0) + S_P(T_0) = S_M(T, B) + S_P(T),$$
(7)

где $S_P = \int_{T_0}^{T} \frac{C_V dT}{T}$ представляет фононный вклад в энтропию, C_V — молярная теплоемкость, которую при низких температурах можно приближенно представить в виде

$$C_V = \frac{12}{5} R \pi^4 n (T/\Theta_D)^3,$$
 (8)

n = 20 — число атомов в молекуле Tb₃Ga₅O₁₂, R — универсальная газовая постоянная, Θ_D — температура Дебая, точное значение которой для Tb₃Ga₅O₁₂ в настоящее время нам неизвестно, однако сопоставление имеющихся данных по температуре Дебая для алюминатов-гранатов [18] позволяет оценить ее величину как $\Theta_D \approx 500$ К. Следует отметить, что аппроксимация теплоемкости выражением (8) является достаточно грубой и носит оценочный характер, особенно для кристаллов со столь сложной кристаллографической структурой, как в редкоземельных гранатах. Об этом,

в частности, свидетельствуют результаты работы [19], в которой показано, что температура Дебая галлатаграната гадолиния достаточно сильно зависит от температуры ее измерения.

В выражении (7) энтропия S_M равна (в расчете на одну молекулу Tb₃Ga₅O₁₂)

$$S_{M} = -\frac{1}{2} \sum_{m=1}^{6} \sum_{n} \left(\exp\left(-\frac{E_{n}(m)}{T}\right) Z_{m}^{-1} \right) \\ \times \ln\left(\exp\left(-\frac{E_{n}(m)}{T}\right) Z_{m}^{-1} \right), \tag{9}$$

где $Z_m = \sum_n \exp\left(-\frac{E_n(m)}{T}\right)$ является усредненным по неэквивалентным позициям (индекс *m*) магнитным вкладом в энтропию. Решение уравнения (7) дает магнитокалорический эффект — зависимость T(B).

Полученные в этом разделе теоретические формулы использовались для анализа экспериментальных данных (см. далее).

Экспериментальная методика и образец

В настоящей работе измерялся эффект Фарадея Тb₃Ga₅O₁₂ при начальной температуре образца 6 К. Измерения выполнялись на длине волны 0.63 µm, лежащей в окне прозрачности вдалеке от линий поглощения редкоземельных ионов, и проводились по обычной интенсивностной схеме с использованием газового лазера. Импульсное магнитное поле до 75 T генерировалось разрядом батареи конденсаторов на одновитковый соленоид. Охлаждение до низких температур осуществлялось в продувном гелиевом криостате, так что образец во время измерения находился в парах гелия. Длительность импульса составляла 6 µm. Ранее [12] теоретически и экспериментально было показано, что при таком режиме охлаждения процесс намагничивания является адиабатическим, если скорость нарастания поля превышает примерно 100 T/s. Поскольку в нашем случае магнитное поле изменялось со значительно большей скоростью (более 10^7 T/s), можно утверждать, что измерения проводились в адиабатическом режиме.

Монокристалл галлата-граната тербия $Tb_3Ga_5O_{12}$ был выращен методом из раствора в расплаве. Из него была вырезана пластинка толщиной 0.64 mm, ориентированная перпендикулярно кристаллографическому направлению (110).

3. Экспериментальные данные и их обсуждение

На рис. 1 приведена экспериментальная полевая зависимость эффекта Фарадея Tb₃Ga₅O₁₂ в импульсных полях при начальной температуре образца 6 К. Видно,

¹ Здесь предполагается, что энтропия достаточно быстро передается от магнитной подсистемы в решетку, так что магнитную подсистему и решетку можно описывать одной температурой.

Рис. 1. Зависимости эффекта Фарадея $Tb_3Ga_5O_{12}$ от магнитного поля. Жирная линия — экспериментальная зависимость $\alpha_F(B)$ в адиабатическом режиме при начальной температуре образца 6 K; тонкие линии — теоретические зависимости $\alpha_F(B)$ в изотермическом режиме, полученные при температурах от 6 до 41 K через 5 K.

что фарадеевское вращение в сравнительно слабых полях $B \approx 40 \,\mathrm{T}$ достигает насыщения. Отметим, что на экспериментальной зависимости не наблюдаются особенности, обусловленные пересечением энергетических уровней иона Tb³⁺ в магнитном поле. На этом же рисунке показаны теоретические зависимости эффекта Фарадея галлата-граната тербия в изотермическом режиме при низких температурах. Для построения этих зависимостей в абсолютных единицах мы воспользовались тем обстоятельством, что, согласно расчетам, при низких температурах ($T \le 50 \,\mathrm{K}$) намагниченность тербиевой подрешетки M_0 в сильных полях ($B \ge 50$ T) практически не зависит от температуры, т.е. при этих условиях адиабатическая и изотермическая намагниченности совпадают. Это дает возможность определить константу А в формуле (3) для эффекта Фарадея из сопоставления теоретических данных, полученных для изотермического режима, с экспериментальными данными при адиабатическом намагничивании в области высоких полей (B = 70 T): $A = 1500^{\circ}/(\mu_{\text{B}} \cdot \text{cm})$.

Из рис. 1 видно, что экспериментальная адиабата эффекта Фарадея пересекает теоретически рассчитанные изотермические зависимости $\alpha_F(B)$. В точках пересечения температура образца в адиабатическом режиме равна температуре соответствующей изотермической зависимости. Таким образом, сопоставление экспериментальной адиабатической кривой фарадеевского вращения плоскости поляризации падающего света с изотермами $\alpha_F(B)$ позволяет непосредственно определить магнитокалорический эффект — зависимость температуры образца от магнитного поля в адиабатическом режиме.

На рис. 2 показана определенная таким образом зависимость T(B) для тербиевого галлата-граната. Видно, что возрастание температуры при адиабатическом намагничивании в поле 75 Т достигает 35 К. На этом же

рисунке приведена теоретическая зависимость, рассчитанная по формулам (7)-(9) с использованием значения температуры Дебая $\Theta_D = 500$ К. Видно, что экспериментальная и теоретическая зависимости T(B) имеют одинаковый характер, а величины теоретически рассчитанного и экспериментально определенного магнитокалорического эффекта близки друг к другу, хотя экспериментальный эффект несколько больше (на 3-4 К). Причина такого расхождения в настоящее время не выяснена. Как показывают оценки, величина изменения температуры при адиабатическом намагничивании слабо зависит от значения температуры Дебая; ее изменение в пределах 20-30% не позволяет существенно улучшить согласие теории и эксперимента. Возможно, это расхождение обусловлено, как отмечалось выше, недебаевским характером фононного спектра в гранатах.

На рис. З приведено сопоставление теоретически рассчитанной адиабаты эффекта Фарадея, полученной при использовании величины магнитокалорического эффекта, найденного из решения (8), с экспериментальной зависимостью $\alpha_F(B)$ (при начальной температуре 6 К). Видно, что согласие экспериментальной и теоретиче-

Рис. 2. Магнитокалорический эффект $\alpha_F(B)$ в Tb₃Ga₅O₁₂. Точки — данные эксперимента, сплошная линия — расчет.

Рис. 3. Изотерма $\alpha_F(B)$ при 6 К (расчет) (1) и адиабаты $\alpha_F(B)$ при начальной температуре образца 6 К (2 — эксперимент, 3 — расчет).

2017

ской кривых является достаточно хорошим, что подтверждает справедливость модели и правильность использования приведенных выше параметров кристаллического поля. Заметим, что другие наборы параметров кристаллического поля, имеющиеся в литературе [11], хуже описывают экспериментальные данные.

Отметим, что, по всей видимости, небольшие вариации величин параметров кристаллического поля, использованных в данной работе, позволили бы достичь еще лучшего согласия экспериментальных и теоретических результатов.

На рис. 3 показана также теоретически рассчитанная изотерма эффекта Фарадея при 6 К. На ней хорошо видна особенность вблизи 9.5 Т, обусловленная пересечением энергетических уровней. Отсутствие этой особенности при адиабатических измерениях обусловлено повышением температуры образца из-за магнитокалорического эффекта, что приводит к размытию этой особенности.

Таким образом, использование параметров кристаллического поля, действующего на ионы Tb^{3+} в $Tb_3Ga_5O_{12}$, из работы [10] (см. табл. 2) позволяет описать не только поведение намагниченности тербиевого галлата-граната в слабых магнитных полях в изотермическом режиме, но и полевую зависимость эффекта Фарадея в сильных магнитных полях в адиабатическом режиме, а также зависимость температуры образца от магнитного поля во время действия импульса.

Список литературы

- [1] F. Herlach. Strong and ultrastrong magnetic fields and their applications. Springer-Verlag (1985). 176 p.
- [2] У.В. Валиев, А.К. Звездин, Г.С. Кринчик, Р.З. Левитин, К.М. Мукимов, А.И. Попов. ЖЭТФ 79, 235 (1980).
- [3] У.В. Валиев, А.К. Звездин, Г.С. Кринчик, Р.З. Левитин, К.М. Мукимов, А.И. Попов. ЖЭТФ 85, 3111 (1983).
- [4] A.K. Zvezdin, V.A. Kotov. Modern magnetooptics and magnetooptical materials. IOP publishing, Bristol and Phyladelphia (1997). 386 p.
- [5] С. Крупичка. Физика ферритов и родственных им магнитных окислов. Мир, М. (1976). Т. 2. 504 с.
- [6] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985). 296 с.
- [7] Ю.А. Изюмов, В.Е. Найш, Р.П. Озеров. Найтронография магнетиков. Атомиздат, М. (1981). 312 с.
- [8] J.A. Koningstein, C.J. Kaue-Maguire. Can. J. Chem. 52, 3445 (1974).
- [9] F. Harbus, H.E. Stanly. Phys. Rev. 88, 1156 (1973).
- [10] M. Guillot, A. Marchand, V. Nekvasil, F. Tcheou. J. Phys. C.: Solid State Phys. 18, 3547 (1985).
- [11] V. Nekvasil, I. Veltruski. J. Magn. Magn. Mater. 86, 315 (1990).
- [12] R.Z. Levitin, V.V. Snegirev, A.V. Kopylov, A.S. Lagutin, A. Gerber, J. Magn. Magn. Mater. 170, 223 (1997).
- [13] M.D. Kuz'min, A.M. Tishin. Cryogenics 32, 545 (1992).
- [14] У.В. Валиев, А.А. Клочков, А.И. Попов, Б.Ю. Соколов. Опт. и спектр. 66, 613 (1989).

- [15] R. Serber. Phys. Rev. 41, 489 (1932).
- [16] B.G. Wybourne. Spectroscopic properties of rare earth. Wiley, N.Y. (1965). 218 p.
- [17] К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин. Ориентационные фазовые переходы. Наука, М. (1979). 320 с.
- [18] B. Nagaian, M. Pam Babu, D.B. Sirdeshmukh. Indian J. Pure Appl. Phys. 17, 838 (1979).
- [19] Wen Dai, E. Gmelin, R. Kremer. J. Phys. D21, 628 (1988).

7 Физика твердого тела, 2002, том 44, вып. 11