Магнитные свойства редкоземельного интерметаллида HoMn₂Ge₂

© Го Гуанхуа, М.В. Ерёмин*, Н.П. Колмакова*, А.С. Лагутин**, Р.З. Левитин

Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

* Брянский государственный технический университет,

241035 Брянск, Россия

** Институт молекулярной физики Российского исследовательского центра "Курчатовский институт",

123182 Москва, Россия

E-mail: npk@bitmcnit.bryansk.su

(Поступила в Редакцию 11 декабря 2001 г.)

Экспериментально и теоретически исследованы магнитные свойства тетрагонального интерметаллического соединения HoMn₂Ge₂. Измерены температурные зависимости параметров решетки и начальной магнитной восприимчивости и кривые намагничивания в поля до 50 Т. Определены параметры кристаллического поля и обменных Ho–Mn и Mn–Mn взаимодействий, рассчитана температурная зависимость поля перехода из антиферромагнитной в ферромагнитную фазу в поле вдоль тетрагональной оси.

Работа частично поддержана Российским фондом фундаментальных исследований (грант № 99-02-17358).

1. Соединения RMn2Ge2 кристаллизуются в тетрагональную структуру типа ThCr₂Si₂ (пространственная группа І4/тт), которая представляет собой набор -R-Ge-Mn-Ge-R- слоев, препендикулярных оси с. Магнитные и другие физические свойства этих соединений, представляющих собой идеальные естественные сверхрешетки, интенсивно изучались последние два десятилетия, в частности в связи с многочисленными фазовыми переходами. В интерметаллидах RMn₂Ge₂ с тяжелыми редкими замлями магнитные моменты марганца ферромагнитно упорядочены в слоях за счет Мп-Мп-обменного взаимодействия в слое, которое является самым сильным из взаимодействий. Межслойное Мп-Мп- и R-Мп-взаимодействия антиферромагнитны. При $T < T_{\rm N} \approx 460 \, {\rm K}$ марганцевая подсистема упорядочена антиферромагнитно, а редкоземельная подсистема разупорядочена. В HoMn₂Ge₂, в отличие от соединений с некоторыми другими редкими землями (R = Gd, Tbили Dy), редкоземельная подсистема остается разупорядоченной до очень низких температур [1], что связано с меньшей величиной R-Mn-обмена [2]. В соответствии с нейтронографическими данными [1], ниже $T_{\rm N}^{\rm Ho} = 2.5 \, {\rm K}$ магнитные моменты гольмия образуют наложение двух синусоидально модулированных магнитных структур с разными волновыми векторами. Антиферромагнитное упорядочение марганцевой подсистемы с ориентацией магнитных моментов коллинеарно тетрагональной оси сохраняется вплоть до 1.3 К [1]. В работе [3] при исследовании магнитных фазовых переходов в соединениях RMn₂Ge₂ в сверхсильных магнитных полях при гелиевых температурах для гольмиевого соединения обнаружен переход первого рода вблизи 90 Т, который идентифицирован как переход из антиферромагнитной в ферромагнитную фазу. Этот факт, а также наши измерения начальной восприимчивости, параметров кристаллической решетки и кривых намагничивания в полях до 50 Т позволяли обсудить магнитные свойства соединения HoMn₂Ge₂ и определить величины параметров основных взаимодействий в этом соединении.

2. Поликристаллические образцы интерметаллида НоМп₂Ge₂ выплавлены в индукционной печи в атмосфере аргона в условиях квазилевитации из исходных элементов с чистотой 99.9%. Для лучшей гомогенизации образцы переплавлялись 3 раза и отжигались в течение 170 часов в динамическом вакууме при температуре 750°С. Однофазность образцов контролировалась рентгенографически. Начальная магнитная восприимчивость измерялась как в переменном поле (интервал температур от 4.2 до 270 К), так и в постоянном поле (от 300 до 500 К). Измерение температурной зависимости параметров решетки рентгеновским методом производилось на дифрактометре "Гейгерфлекс" (Япония) в температурном диапазоне 10-800 К. Из рис. 1, на котором показаны температурные зависимости магнитной восприимчивости и параметров кристаллической структуры HoMn₂Ge₂, видно, что при $T_N \approx 460 \,\mathrm{K}$ марганцевая подсистема переходит из парамагнитного в антиферромагнитное состояние, при этом для параметра решетки a(T) наблюдается отрицательная аномалия. При низких температурах магнитная восприимчивость резко возрастает, что может быть связано с близостью появления магнитного упорядочения в гольмиевой подсистеме.

Намагниченность HoMn₂Ge₂ измерялась с помощью импульсного индукционного магнитометра [4] в температурном интервале от 8 до 50 К в сильных импульсных магнитных полях до 50 T с длительностью импульса 26 ms на свободных порошках, частицы которых могут поворачиваться в поле. При T = 8 К измерения проводились также на вибромагнитометре в полях до 12 T. На рис. 2, где приведены кривые намагничивания, видно достаточно хорошее совпадение результатов измерений этими двумя методами (ср. кривые *a* и *b*). Величина намагниченности HoMn₂Ge₂ в больших полях составляет примерно 8 μ_B /f.u., что меньше значения для свободного иона ($10\mu_B/f.u.$) и свидетельствует о существенном влиянии кристаллического поля (КП).

Рис. 1. Температурные зависимости магнитной восприимчивости (a) в переменной поле (1) и в статическом поле (2), а также параметров кристаллической решетки (b) соединения HoMn₂Ge₂.

Рис. 2. Экспериментальные (сплошные) и рассчитанные (штриховые) кривые намагничивания для температур 8 (1), 27.5 (2) и 49 K (3). На вставке приведена H-T-диаграмма для фазового перехода из антиферромагнитной (AF) в ферромагнитную (F) фазу в поле вдоль тетрагональной оси; кружком показано экспериментальное значение поля фазового перехода при T = 5 K из работы [3].

3. Как было указано выше, при $T > T_{\rm N}^{\rm Ho} = 2.5 \, {\rm K}$ гольмиевая подсистема соединения HoMn₂Ge₂ находится в парамагнитном состоянии, марганцевая подсистема антиферромагнитна, при критическом значении поля, ориентированного вдоль тетрагональной оси, она скачком переходит в ферромагнитное состояние. Рассмотрим магнитные свойства этого соединения в поле вдоль тетрагональной оси с учетом минимального, но достаточного для описания экспериментальных данных, числа обменных взаимодействий в приближении молекулярного поля. Для марганцевой подсистемы будем учитывать обменные взаимодействий в слое (параметр λ_{22}^0) и между соседними слоями (параметр λ_{22}). Обмен Но-Но учитывать не будем, поскольку он мал [1] и не существен для интересующего нас температурного интервала. Действие на редкоземельную подсистему всех слоев марганцевой подсистемы суммируется и может быть описано одним параметром λ_{12} (см. [5]). При расчетах учитывалась известная для этих соединений зависимость параметра Mn-Mn-обменного взаимодействия в соседних слоях λ_{22} от межатомного расстояния в слое, т.е. от параметра решетки а [6], которая приводит к температурной зависимости этого обменного параметра,

$$\lambda_{22} = \rho(a - a_c),\tag{1}$$

где $a_c = 4.045 \text{ Å}$ для интерметаллических соединений RMn₂Ge₂.

Эффективный гамильтониан для иона Ho^{3+} , испытывающего действие КП тетрагональной симметрии, в поле вдоль тетрагональной оси (ось z) имеет вид

$$H = \sum_{n,m} B_n^m O_n^m - g_J \mu_B J_z (H + H_z^{(\text{Ho})}),$$

$$n = 2, 4, 6, ; \qquad m = 0.4,$$
(2)

где B_n^m — параметры КП, O_n^m — эквивалентные операторы, g_J — фактор Ланде ($g_J = 5/4$), $J_z - z$ -компонента оператора углового момента иона Ho³⁺. Молекулярное поле, действующее со стороны марганцевой подсистемы, равно $H_z^{(\text{Ho})} = \lambda_{12}(m_{1z} + m_{2z}), m_{kz} = \mu_B g \langle S_{kz} \rangle$, (k = 1, 2), g - g-фактор Мп, $S_{kz} - z$ -компонента оператора k-го спинового момента Мп.

Термодинамический потенциал системы в поле вдоль тетрагональной оси в расчете на одну формульную единицу определяется выражением

$$\Phi = -k_B T \ln Z + \frac{1}{2} M_z H_z^{(\text{Ho})}$$
$$-k_B T \sum_{k=1}^2 \ln \frac{\text{sh}[(2S+1)x_k/2]}{\text{sh}(x_k/2)} + \frac{1}{2} \sum_{k=1}^2 m_k H_{mk}.$$
 (3)

Статсумма Z для гольмиевого магнитного момента определялась с помощью численной диагонализации гамильтониана (2), $M_z = \mu_B g_J \langle J_z \rangle$, $x_k = \mu_B g H_k^{(Mn)} / k_B T$, $H_k^{(Mn)} = H \cos \varphi_k + H_{mk}$, $H_{mk} = \sum_{n=k,k\pm 1} \lambda_{22}^{(n)} m_n \cos(\varphi_n - \varphi_k)$ $+ \lambda_{12} M_z \cos \varphi_k$; φ_k — полярный угол k-го марганцевого магнитного момента (в нашем случае $\varphi_k = 0$ или π), $\lambda_{22}^{(n)}$ — параметры Mn–Mn-обменного взаимодействия между атомами *k*-го и *n*-го слоя. Второй и четвертый члены в выражении (3) являются обычными в теории молекулярного поля корректирующими членами.

Были рассчитаны кривые намагничивания M(H) и H-T-фазовая диаграмма для поля фазового перехода первого рода из антиферромагнитного в ферромагнитное состояние в Мп-подсистеме в поле вдоль тетрагональной оси. Параметры соединения HoMn₂Ge₂ найдены из сопоставления рассчитанных величин с экспериментальными данными.

4. Экспериментальные кривые намагничивания НоМп₂Ge₂ для трех значений температуры (сплошные кривые на рис. 2) свидетельствуют о существенном влиянии КП на магнитный момент Но-подсистемы, которая находится в парамагнитном состоянии, поскольку в этой области температур молекулярные поля, действующие на каждый слой гольмия со стороны двух соседних слоев марганца, компенсируют друг друга. Мы использовали эти кривые для определения параметров КП, при этом в отсутствие спектроскопической информации рассмотрение было ограничено тремя параметрами (параметры шестого порядка B_6^0 и B_6^4 были положены равными нулю, как это было сделано в работе [7] в случае DyMn₂Ge₂ при определении КП из температурных зависимостей сверхтонкого поля и квадрупольного взаимодейстия). В качестве начальных значений при подгонке использовались, в частности, параметры КП DyMn₂Ge₂, уточненные нами в работе [5] по совокупности магнитных данных. Наилучшее описание кривых намагничивания (рис. 2) достигнуто при следующих величинах параметров (в сm⁻¹): $B_2^0 = 169, B_4^0 = -72, B_4^4 = -556$, которые существенно оотличаются от определенных нами для $DyMn_2Ge_2$ только по параметру B_4^0 .

5. Величины параметров обменных взаимодействий Мп–Мп в соседних слоях (λ_{22}) и Ho–Mn (λ_{12}) мы определили, используя экспериментальное значение поля перехода из антиферромагнитной фазы в ферромагнитную при ориентации поля вдоль тетрагональной оси $H_{AF\rightarrow F} = 91$ T для T = 5 K из работы [3]. При низких температурах из разложения термодинамического потенциала (3) (см. также [5]) имеем

$$H_{\rm AF\to F} = -\lambda_{12}M - \lambda_{22}m. \tag{4}$$

Магнитный момент гольмия M полагаем, в соответствии с нашими экспериментальными данными, равным $8.3 \mu_B$ (рис. 2), а для магнитного момента марганца m в антиферромагнитной фазе принимаем усредненное по серии RMn₂Ge₂ (R = Tb, Ho, Er, Tm) в работе [1] значение $2.3 \mu_B$. Далее величины λ_{12} и λ_{22} из их линейной комбинации (4) определялись двумя способами. В первом — λ_{12} для HoMn₂Ge₂ пересчитывали из λ_{12} для DyMn₂Ge₂ [5] через соответствующие факторы Ланде, а затем λ_{22} определяли из выражения (4). Во втором — λ_{22} в HoMn₂Ge₂ пересчитывали через λ_{22} в DyMn₂Ge₂ [5] с помощью формулы (1), для a_{Dy} использовались данные нашей работы [5], а затем λ_{12} определяли из выражения (4). Примечательно, что оба способа приводят к

близким значениям параметров: $\lambda_{12} = -4.5 \pm 0.5 \text{ T}/\mu_B$, $\lambda_{22} = -23 \pm 2 \text{ T}/\mu_B$. Аналогичное определение параметров HoMn₂Ge₂ на основе параметров для соединения GdMn₂Ge₂, определенных в работе [8], дает больший их разброс. Это обстоятельство, возможно, связано с тем, что Gd дальше, чем Dy, отстоит от Ho в ряду редкоземельных элементов.

Расчет температурной зависимости критического поля $H_{AF\rightarrow F}$ произведен на основе термодинамического потенциала (3), в котором учтены температурные и полевые зависимости всех характерстик рассматриваемой системы. При этом мы также учли температурную зависимость межслойного Mn–Mn-обменного параметра λ_{22} по формуле (1) с помощью измеренной температурной зависимости параметра решетки a(T) (рис. 1, b). Параметр обменного взаимодейстия Mn–Mn в слое λ_{22}^0 найден из значения $T_N = 460$ K с учетом известной величины λ_{22} : $\lambda_{22}^0 = 2.1 \cdot 10^3$ T/ μ_B . Рассчитанная фазовая диаграмма приведена на вставке к рис. 2.

Список литературы

- G. Venturini, B. Malaman, E. Ressouche. J. Alloys Compounds 240, 1, 139 (1996).
- [2] A. Szutula, J. Leciejewicz. In: Handbook on the Physics and Chemistry of Rare Earths / Ed. K.A. Gschneidner, jr., L. Eyring. Elsevier Science, Amsterdam (1989). Vol. 12. P. 133.
- [3] А. Кирсте, Р.З. Левитин, М. фон Ортенберг, В.В. Платонов, Н. Пульманн, В.В. Снегирев, Д.А. Филиппов, О.М. Таценко. ФТТ 43, 9, 1661 (2001).
- [4] A.S. Lagutin, J. Vanacken, N. Harrison, F. Herlach. Rev. Sci. Instrum. 8, 4267 (1995).
- [5] Го Гуанхуа, М.В. Еремин, А. Кирсте, Н.П. Колмакова, А.С. Лагутин, Р.З. Левитин, М. фон Ортенберг, А.А. Сидоренко. ЖЭТФ 120, 10, 910 (2001).
- [6] C. Kittel. Phys. Rev. 120, 2, 335 (1960).
- [7] G. Venturini, B. Malaman, K. Tomala, A. Szutula, J.P. Sanchez. Phys. Rev. B46, 1, 207 (1992).
- [8] А.Ю. Соколов, Го Гуанхуа, С.А. Грановский, Р.З. Левитин, Х. Вада, М. Шига. ЖЭТФ 116, 4, 1346 (1999).