Ян-теллеровские ионы хрома в кристаллах CdF₂ и CaF₂: изучение методом ЭПР в диапазоне частот 9.3–300 GHz

© М.М. Зарипов, В.Ф. Тарасов, В.А. Уланов, Г.С. Шакуров

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, 420029 Казань. Россия

E-mail: ulanov@dionis.kfti.kcn.ru

(Поступила в Редакцию 9 января 2002 г.)

В диапазоне частот 9.3–300 GHz методом ЭПР исследованы примесные центры двухвалентного хрома в кристаллах CdF₂ и CaF₂. Установлено, что в этих кристаллах ионы Cr²⁺ стабилизируются в позициях катионов решеток и образуют кластер $[CrF_4F_4]^{6-}$, магнитные свойства которого при низких температурах имеют ромбическую симметрию. Определены параметры электронного зеемановского и лигандных взаимодействий с четырьмя ионами фтора ближайшего окружения Cr²⁺. Измерены начальные расщепления в системе спиновых уровней энергии кластера.

Основному состоянию свободного иона Cr^{2+} соответствует ⁵*D*-терм. При внедрении в кристаллы структурного ряда флюорита (CdF₂, CaF₂, SrF₂ и BaF₂) ионы двухвалентного хрома оказываются в позициях катионов решетки, координационным многогранником которых является правильный куб с ионами F⁻ в его вершинах. В таком случае, согласно теории кристаллического поля, пятикратно вырожденный основной ⁵*D*-терм иона хрома расщепляется на возбужденный орбитальный дублет ⁵*E*_g и основной триплет ⁵*T*_{2g}. По этой причине образующийся в кристалле примесный комплекс [CrF₈]⁶⁻ интересен для изучения как объект с ян-теллеровскими свойствами.

Оптические исследования CdF_2 : Cr [1], обнаружившие переходы между состояниями ${}^5T_{2g}$ и 5E_g , позволили оценить расщепление уровней основного триплета ${}^{5}T_{2g}$ величиной порядка $5000 \,\mathrm{cm}^{-1}$. Этот факт свидетельствует о значительных искажениях решетки кристалла вблизи парамагнитной примеси. Характерная температурная зависимость оптических спектров [1] указывает на янтеллеровскую природу этих искажений. Необходимо отметить, что, согласно [2], вибронная связь орбитального триплета ⁵*T*_{2g} с *e*_g-колебаниями должна была бы привести к тетрагональному искажению координационного куба примесного иона, а связь с t_{2g} -колебаниями к тригональному искажению. Поскольку исследования авторов [1] обнаружили ромбическую анизотропию оптических свойств центров Cr²⁺, в данном случае, очевидно, в равной степени эффективными являются взаимодействия с колебаниями как тетрагональной, так и тригональной симметрии.

Исследования методом ЭПР кристаллов $CdF_2: Cr$ [3] подтвердили эти выводы. В работе [3] по результатам изучения лигандной сверхтонкой структуры спектров ЭПР была определена молекулярная структура примесного парамагнитного комплекса. Оказалось, что ион Cr^{2+} расположен в центре координационного многогранника, представляющего собой прямую ромбическую призму, в вершинах которой находятся восемь ионов F^- .

Такие же выводы относительно структуры комплексов Cr^{2+} были сделаны при изучении (методом ЭПР)

кристаллов CaF₂: Cr [4,5] и SrF₂: Cr [6]. В работе [6] эти исследования были проведены в широком диапазоне частот, что позволило определить с достаточно высокой точностью практически все параметры спинового гамильтониана (СГ). Что касается исследований в кристаллах CdF_2 : Cr [3] и CaF_2 : Cr [4,5], то они были выполнены на частотах 9.3 [3,4] и 34 GHz [5], поэтому параметры СГ определялись авторами на основании изучения угловых зависимостей ЭПР-переходов типа $|+1\rangle \leftrightarrow |-1\rangle$ и $|+2\rangle \leftrightarrow |-2\rangle$. Поскольку на таких низких частотах наблюдение переходов $|0\rangle \leftrightarrow |-1\rangle$ и $|\pm 1\rangle \leftrightarrow |\pm 2\rangle$ оказалось невозможным, большинство полученных в работах [3-5] параметров могло быть определено лишь весьма приблизительно. Так, в [5] расщепления между спиновыми уровнями $|0\rangle$, $|\pm 1\rangle$ и $|\pm 2\rangle$ были оценены на основе изучения температурной зависимости населенностей спиновых уровней энергии примесного комплекса. При этом некоторые сомнения вызывали значения параметров СГ, полученные в [3]. Они отличались от результатов исследований [5,6] в несколько раз, что казалось маловероятным, если учитывать схожесть молекулярных структур комплексов в этих трех однотипных кристаллах-матрицах.

Таким образом, основной целью настоящей работы явилось уточнение данных [3–5].

1. Эксперимент

Кристаллы CdF₂:Сr были выращены методом Бриджмена в атмосфере гелия с небольшими добавками фтора. В качестве материала тигля для расплава CdF₂: Cr использовался химически чистый графит. Примесь хрома вводилась в расплав в виде хорошо просушенного порошка трехфтористого хрома. Добавление фтора в атмосферу выращивания кристалла диктовалось необходимостью создания нестехиометрического расплава с избыточным содержанием фтора. Это способствовало повышению равновесной концентрации растворенных в расплаве ионов хрома. Как оказалось, именно присутствие в расплаве избыточных ионов фтора является необходимым условием внедрения хрома в решетку растущего кристалла. Кристаллы CaF_2 : Сг выращивались в подобных условиях, но поскольку упругость паров расплава фтористого кальция значительно ниже, чем у CdF_2 , в этом случае для выращивания кристаллов был использован метод Чохральского.

Изучение полученных кристаллов методом ЭПР показало, что в зависимости от условий выращивания в кристалле образуются или преимущественно центры двухвалентного хрома (градиент температуры вблизи фронта кристаллизации больше 50 deg/cm, скорость движения фронта больше 20 mm/h), или (в обратном случае) центры трехвалентного хрома тригональной симметрии, описанные в работе [7].

В некоторых образцах кристаллов CdF_2 : Сг были обнаружены слабые сигналы ЭПР, угловые зависимости которых указывали на ромбическую симметрию соответствующих им центров. Повторная рекристаллизация этих образцов позволяла избавляться от присутствия таких центров. С другой стороны, добавление в атмосферу выращивания кристаллов небольшого количества кислорода приводило к увеличению их концентрации. Такого же типа кислородосодержащие центры были обнаружены и в кристаллах CaF_2 : Сг; параметры их спектров ЭПР совпали с данными работы [5], полученными для примесных комплексов [CrF₆O]⁶⁻.

Данное исследование выполнено методом ЭПР на образцах $CdF_2: Cr$ и $CaF_2: Cr$, содержащих в основном комплексы $[CrF_4F_4]^{6-}$. Измерения проводились на частотах 9.3 и 37 GHz (на спектрометре ЭПР Е-12 фирмы "Varian") и в диапазоне 65–300 GHz (на квазиоптическом спектрометре, описанном в работе [8]). Использование в субмиллиметровом диапазоне перестраиваемого по частоте спектрометра позволило прямым методом определить все начальные расщепления в системе спиновых уровней энергии примесного иона Cr^{2+} .

Поскольку относительно представленных в работе [3] величин параметров СГ возникли сомнения, кристаллы CdF₂: Cr²⁺ были изучены наиболее тщательно и большая часть данной статьи посвящена результатам изучения именно этих кристаллов. На рис. 1 приведены графики зависимостей частот резонансных электронных переходов типа $|0
angle \leftrightarrow |\pm 1
angle$ и $|\pm 1
angle \leftrightarrow |\pm 2
angle$ от величины внешнего магнитного поля В₀, построенные при исследовании образцов $CdF_2 : Cr^{2+}$ и $CaF_2 : Cr^{2+}$ в субмиллиметровом диапазоне. Точки соответствуют экспериментальным результатам, линии — расчетным значениям. На рисунке рядом с каждой кривой указан тип резонансного перехода, которому соответствует эта кривая. Для упрощения рисунков здесь изображены графики для переходов в системе спиновых уровней энергии лишь той части структурно-эквивалентных центров, ось Z которых параллельна вектору внешнего постоянного магнитного поля В₀. В действительности наблюдаются также переходы между состояниями еще пяти магнитно-неэквивалентных центров, которые ориентированы относительно вектора В₀ иначе.

Рис. 1. Графики зависимостей частот резонансных переходов типа $|0\rangle \leftrightarrow |\pm 1\rangle$ и $|\pm 1\rangle \leftrightarrow |\pm 2\rangle$ от величины внешнего магнитного поля B_0 . *a*, *b* — CdF₂:Cr²⁺, *c*, *d* — CaF₂:Cr²⁺.

Рис. 2. Угловые зависимости резонансных значений внешнего магнитного поля, полученные при вращении вектора **B**₀ в плоскости $\langle 110 \rangle$ кристалла CdF₂ : Cr²⁺ (T = 4.2 K, f = 37 GHz). Темные кружки соответствуют электронным переходам $|+1\rangle \leftrightarrow |-1\rangle$, светлые кружки — $|+2\rangle \leftrightarrow |-2\rangle$, а темные квадраты — $|0\rangle \leftrightarrow |-1\rangle$.

Рис. 3. Угловые зависимости резонансных значений внешнего магнитного поля B_0 , полученные при T = 4.2 K на частоте 9.3 GHz для плоскости (110) кристалла CdF₂:Cr²⁺. Темные кружки соответствуют переходам $|+1\rangle \leftrightarrow |-1\rangle$, светлые — $|+2\rangle \leftrightarrow |-2\rangle$.

Угловые зависимости резонансных значений внешнего магнитного поля, полученные при вращении вектора **B**₀ в плоскости кристалла $\langle 110 \rangle$ при T = 4.2 К на частоте 37 GHz, предствлены на рис. 2. На этом рисунке показаны переходы как внутри пар спиновых уровней $|\pm 1\rangle$ и $|\pm 2\rangle$, так и между уровнями $|0\rangle$ и $|-1\rangle$. Переходы типа $|-1\rangle \leftrightarrow |+1\rangle$ наблюдаются для всех шести магнитнонеэквивалентных центров. Переходы $|0\rangle \leftrightarrow |-1\rangle$ имеют место лишь для одной группы таких центров, в которых вектор **B**₀ ориентирован под небольшими углами ($\leq 12-15^{\circ}$) относительно оси *Z*. Это объясняется тем, что состояния $|0\rangle$ и $|\pm 1\rangle$ разделены значительным энергетическим интервалом, определяемым в основном величиной параметра начального расщепления b_2^0 (так как $3b_2^0 \gg \beta_e gB_0 \sim 6b_2^2$).

В тех случаях, когда вектор магнитной компоненты электромагнитного поля в резонаторе спектрометра \mathbf{B}_f ориентирован перпендикулярно оси квантования спиновых моментов исследуемых центров, переходы $|2\rangle \leftrightarrow |+2\rangle$ являются "запрещенными". Однако, поскольку при вращении \mathbf{B}_0 в плоскости кристалла (110) вектор \mathbf{B}_f имеет ненулевую оставляющую вдоль осей квантования пяти (из шести) групп магнитно-неэквивалентных центров, существовала возможность зарегистрировать соответствующие этим переходам резонансные линии. В действительности это оказалось возможным лишь для четырех групп таких центров, для которых угол между осью Z и вектором **B**₀ не превышал 50–60°.

При некоторых ориентациях вектора внешнего магнитного поля (\mathbf{B}_0) относительно главных осей кристаллов (CdF₂:Cr²⁺ и GaF₂:Cr²⁺) в спектрах ЭПР наблюдалась лигандная сверхтонкая структура (ЛСТС). Лучшее разрешение имело место для переходов $|+2\rangle \leftrightarrow |-2\rangle$; на переходах $|+1\rangle \leftrightarrow |-1\rangle$ ЛСТС наблюдалась только в образцах CdF₂:Cr²⁺ в ориентации $\mathbf{B}_0 \parallel Y$; частично разрешенная ЛСТС найдена в образцах CdF₂:Cr²⁺ на переходе $|0\rangle \leftrightarrow |-1\rangle$ в ориентации $\mathbf{B}_0 \parallel Z$. В большинстве случаев ЛСТС представляла собой пять резонансных линий, относительные интенсивности которых примерно соответствовали распределению 1:4:6:4:1. Однако в обоих кристаллах-матрицах на переходах $|+2\rangle \leftrightarrow |-2\rangle$ наблюдалась также зависимость ширины линий лигандного сверхтонкого квинтета от направления вектора \mathbf{B}_0 .

На рис. З представлены угловые зависимости резонансных значений внешнего поля, полученные при T = 4.2 К на частоте 9.3 GHz для плоскости (110). Видно, что в ориентации $\mathbf{B}_0 \parallel \langle 001 \rangle$ в магнитном поле ≈ 0.4 Т должна быть линия, обусловленная переходами $|+1\rangle \leftrightarrow |-1\rangle$. В работе [3] эту линию ошибочно приписали переходу $|+2\rangle \leftrightarrow |-1\rangle$.

2. Результаты эксперимента и обсуждение

На рис. 1–3 теоретические положения резонансных линий определялись из условия равенства соответствующих разностей собственных значений СГ

$$H = \beta_e B_0 g S + b_2^0 O_2^0 + b_2^2 O_2^2 + b_4^0 O_4^0 + b_4^2 O_4^2 + b_4^4 O_4^4 \quad (1)$$

энергии квантов электромагнитного поля в резонаторе спектрометра. Здесь для кристалла CdF_2 $b_2^0 = -27\,700 \pm 50$, $|(b_2^2 - 4b_4^2)| = 900 \pm 30$, $b_4^0 \approx 5$, $|b_4^4| = 45 \pm 5$, $g_x = 1.978 \pm 0.005$, $g_y = 1.995 \pm 0.005$, $g_z = 1.946 \pm 0.005$; для кристалла CaF_2 $b_2^0 = -28\,400 \pm 100$, $|(b_2^2 - 4b_4^2)| = 1800 \pm 50$, $b_4^0 \approx 3$, $|b_4^4| = 25 \pm 10$, $g_x = 1.97 \pm 0.01$, $g_y = 1.98 \pm 0.01$, $g_z = 1.94 \pm 0.01$ (параметры b_n^m в MHz).

СГ (1) представлен в системе координат, оси которой ориентированы относительно главных осей кристалла следующим образом: $X \parallel \langle 001 \rangle$, $Y \parallel \langle 1-10 \rangle$, $Z \parallel \langle 110 \rangle$. При этом выбор оси Z был обусловлен требованием, чтобы модуль коэффициента b_2^0 перед спиновым оператором O_2^0 в гамильтониане (1) имел максимальное значение. Гамильтонианы для остальных пяти центров могут быть получены с помощью преобразований кубической группы симметрии.

В процессе выполнения расчетов возникли сомнения в возможности однозначного определения всех восьми параметров СГ (1). Для исследования этого вопроса была найдена приближенная система линейных уравнений, в которых параметры b_2^0 , b_2^2 , b_4^0 , b_4^2 , b_4^4 , g_x , g_y и g_z являются неизвестными, т.е. использован метод наименьших квадратов, сформулированный в первом порядке теории возмущений. Для этого матрица СГ (1) определялась на собственных функциях "укороченного" гамильтониана

$$H^{(0)} = \beta_e B_0 g^{(0)} S + (b_2^0)^{(0)} O_2^0 + (b_2^2)^{(0)} O_2^2, \qquad (2)$$

где $(b_2^0)^{(0)}$ и $(b_2^2)^{(0)}$ — приближенные значения параметров b_2^0 и b_2^2 , которые можно определить, например, из расщеплений спиновых уровней энергии при $B_0 = 0$ (рис. 1). После этого (по спектрам ЭПР, зарегистрированным на частоте 37 GHz) находятся приближенные значения компонент *g*-тензора: $g_i^{(0)}$ (i = x, y, z). Затем для необходимого набора экспериментальных точек на угловых зависимостях B_0 (res) записываются исходные приближенные равенства, служащие основой для определения коэффициентов совместной системы уравнений в методе наименьших квадратов. В этих приближенных равенствах соответствующие разности диагональных матричных элементов СГ (1), представленного на собственных функциях СГ (2), приравниваются к энергии кванта электромагнитного колебания резонасной частоты.

Оказалось, что детерминант матрицы коэффициентов близок к нулю; это указывает на то, что наличие неизбежных экспериментальных ошибок не позволяет однозначно определить параметры СГ (1). В частности, найдена линейная зависимость между столбцами матрицы коэффициентов при неизвестных b_2^2 и b_4^2 . Эта линейная зависимость приближенно соответствует величине $(b_2^2 - 4b_4^2)$. Установлено также, что если набор экспериментальных точек ограничивается переходами $|+1\rangle \leftrightarrow |-1\rangle$ u $|+2\rangle \leftrightarrow |-2\rangle$, то решения системы уравнений становятся чрезвычайно чувствительными к ошибкам эксперимента. В реальном случае такие расчеты позволяют определить с удовлетворительной точностью величины наиболее существенных параметров СГ (1): $b_{2}^{0}, (b_{2}^{2} - 4b_{4}^{2}), g_{x}, g_{y}$ и g_{z} ; остальные параметры могут быть получены со значительно меньшей относительной точностью.

Анализ расщеплений в ЛСТС спектров ЭПР позволил найти параметры гамильтониана лигандного сверхтонкого взаимодействия (ЛСТВ) электронного магнитного момента исследуемого центра с ядерными магнитными моментами ближайших к примесном хрому ионов фтора. В рассматриваемом случае этот гамильтониан имеет слудующий вид:

$$H_{shfi} = \sum_{i} SA^{\mathrm{F}(i)} I^{\mathrm{F}(i)}, \qquad (3)$$

где S — оператор электронного спинового момента: $A^{F(i)}$ — тензор ЛСТВ с ионами $F^{-}(i)$, $I^{F(i)}$ — оператор спинового момента ядра иона $F^{-}(i)$. Для описания лигандных сверхтонких расщеплений в спектре ЭПР гамильтониан (3) должен быть учтен одновременно с гамильтонианом ядерного зеемановского взаимодействия

(взаимодействия внешнего магнитного поля с магнитным моментом ядра иона $F^{-}(i)$)

$$H_{NZ} = -\sum_{i} g_N \beta_N B_0 I^{F(i)}, \qquad (4)$$

где g_N и $\beta_N - g$ -фактор и магнетон ядра этого иона.

Как следует из данных эксперимента, на каждом центре явно наблюдается взаимодействие лишь с четырьмя эквивалентными ионами фтора. Эти ионы лежат в одной плоскости с примесным ионом Cr²⁺; данная плоскость совпадает с координатной плоскостью ХОУ и параллельна одной из шести плоскостей (110) кристалла. Симметрия ЛСТВ с каждым из этих четырех ионов фтора соответствует группе C_s , а симметрия парамагнитного комплекса в целом — группе D_{2h}. Этот вывод подтверждается и угловыми зависимостями B (res), полученными на частотах 9.3, 37 GHz и в субмиллиметровом диапазоне. Известно (см., например, [5]), что в случаях больших начальных расщеплений спиновых уровней энергии лигандное сверхтонкое расщепление линий ЭПР на электронных переходах $|+2
angle\leftrightarrow|-2
angle$ определяется преимущественно тремя компонентами $(A_{ZX}, A_{ZY} и A_{ZZ})$ тензора $A^{F(i)}$ и очень слабо зависит от направления внешнего магнитного поля. Если лиганды лежат в плоскости XOY, то $A_{ZY} = A_{ZX} = 0$ и измеренные значения расщеплений в ЛСТС спектров ЭПР позволяют определить лишь одну компоненту тензора $A^{\mathrm{F}(i)}$ (т. е. компоненту A_{ZZ}, которая соответствует перпендикулярной компоненте A_{\perp} этого же тензора $A^{F(i)}$, если его представить в "локальной" системе координат с осью Z' вдоль связи $Cr^{2+}-F^{-}(i)$). Действительно, анализ лигандных расщеплений в спектрах ЭПР, полученных на частотах 9.3 и 37 GHz на переходе $|+2\rangle \leftrightarrow |-2\rangle$, показал, что во всех экспериментальных точках наблюдается примерно одинаковое лигандное сверхтонкое расщепление ядерных уровней энергии. Величина этого расщепления на электронном уровне $|M\rangle$ определяется приближенным равенством

$$\delta E_M \cong \left\{ \left(\langle S_Z \rangle^2 A_\perp^2 + f_L^2 \right) - 2A_\perp f_L \langle S_Z \rangle_M \cos \alpha \right\}^{-1/2}, \quad (5)$$

где $\langle S_Z \rangle_M$ — среднее значение электронного оператора S_Z в состоянии $|M\rangle$, соответствующем одному из двух электронных уровней, между которыми наблюдается резонансный переход (M = +2 или -2); $f_L = g_N \beta_N B_0$ (res) — частота ларморовской прецессии ядер фтора во внешнем магнитном поле; α — угол между осью Z и направлением вектора внешнего магнитного поля; $A_{\perp} \langle S_Z \rangle_M \gg f_L$.

Равенство (5) с высокой точностью удовлетворяется в слабом внешнем магнитном поле (ЭПР на частоте 9.3 GHz) и, как показали расчеты, в данном случае может быть использовано также при анализе ЛСТС спектров ЭПР на частоте 37 GHz. С его помощью найдено, что в кристаллах CdF₂ : Cr²⁺ $|A_{\perp}| = 40 \pm 4$ MHz, в CaF₂ : Cr²⁺ $|A_{\perp}| = 42 \pm 5$ MHz (последнее совпадает с данными работы [5]). Компонента тензора ЛСТВ $A'_{ZZ} \approx A_{\parallel}$ (штрих означает локальную систему координат) для кристалла $CdF_2 : Cr^{2+}$ была определена из ЛСТС спектра ЭПР, соответствующего электронному переходу $|+1\rangle \leftrightarrow |-1\rangle$ в ориентации $\mathbf{B}_0 \parallel Y$. Оказалось, что $|A_{\parallel}| = 20 \pm 8$ МНг. В кристалле $CaF_2 : Cr^{2+}$ величину этого параметра определить не удалось, поскольку здесь ЛСТС наблюдалась лишь на переходах $|+2\rangle \leftrightarrow |-2\rangle$.

Что касается взаимодействия с остальными четырьмя ближайшими лигандами, то их влияние на вид спектров ЭПР было обнаружено на переходах $|+2\rangle \leftrightarrow |-2\rangle$ в виде угловой зависимости ширины линий ЛСТС спектров ЭПР.

Исходя из изложенных выше фактов, можно утверждать, что модели изученных центров в кристаллах CdF_2 и CaF_2 совпадают с моделью комплекса примесного двухвалентного хрома в кристалле SrF_2 [6]. Значительные отличия в величинах параметров тонкой структуры спектров ЭПР в кристаллах CdF_2 , определенных в настоящей работе и в [3], могут быть объяснены ошибочной интерпретацией авторами [3] наблюдавшихся ими спектров. По-видимому, это произошло из-за отсутствия у авторов [3] необходимого набора экспериментальных данных.

Список литературы

- [1] W. Ulrici. Phys. Stat. Sol. (b) 84, K155 (1977).
- [2] И.Б. Берсукер, В.З. Полингер. Вибронные взаимодействия в молекулах и кристаллах. Наука, М. (1983).
- [3] R. Jablonski, M. Domanska, B. Krukowska-Fulde. Mat. Res. Bull. 8, 749 (1973).
- [4] J.M. Baker, W. Hayes, D.A. Jones. Proc. Phys. Soc. 73, 942 (1959).
- [5] P.V. Oliete, V.M. Orera, P.J. Alonso. Phys. Rev. B53, 6, 3047 (1996).
- [6] М.М. Зарипов, В.Ф. Тарасов, В.А. Уланов, Г.С. Шакуров, М.Л. Попов. ФТТ 37, 3, 806 (1995).
- [7] R. Alcala, P.J. Alonso, V.M. Orera, H.V. den Hartog. Phys. Rev. B32, 6, 4158 (1985).
- [8] V.F. Tarasov, G.S. Shakurov. Appl. Magn. Res. 2, 3, 571 (1991).