Оптические и магнитооптические свойства магнитных нанокомпозитов FePt–SiO₂

© Е.А. Ганьшина, М.Ю. Кочнева, М.В. Вашук, П.Н. Щербак, К. Aimuta*, М. Inoue*

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * Toyohashi University of Technology, 1–1 Hibari-ga-Oka, Tempaku-cho, Toyohashi, 441-8580, Japan

E-mail: marko@magn.ru

(Поступила в Редакцию 8 июля 2004 г. В окончательной редакции 1 ноября 2004 г.)

Исследованы магнитные, оптические и магнитооптические свойства гранулированных нанокомпозитов $(FePt)_{1-x}(SiO_2)_x$ в неупорядоченном состоянии и после температурной обработки. Наблюдалось значительное усиление магнитооптического отклика для образцов, концентрация металлической компоненты в которых близка к порогу перколяции. При моделировании ТКЕ (ТКЕ — transveral Kerr effect) спектров использовалось простое приближение эффективной среды (EMA), в рамках которого удалось качественно описать экспериментальные данные в широком диапазоне концентраций. Зависимости эффекта Керра от концентрации SiO₂ в составе нанокомпозита не монотонны и демонстрируют резкий излом при приближении к порогу перколяции. Анализ полевых зависимостей ТКЕ и кривых намагничивания показал, что структурные изменения, связанные с процессами упорядочения в отожженных пленках FePt, происходят только в нанокомпозитах с достаточно большими размерами металлических гранул.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (гранты № 03-02-16127 и 03-02-17164).

1. Введение

Физические свойства нанокомпозитных сплавов на основе FePt, такие как магнетизм, электронная структура, фазовое состояние, привлекают повышенный интерес исследователей прежде всего благодаря возможности их практического использования. Требования к материалам, применяющимся для плотной магнитной записи, постоянно растут; существует предположение, что в 2006 г. плотность записи на магнитных носителях должна достигнуть 10-100 Gbits/in [1]. Одним из наиболее вероятных кандидатов, способных перешагнуть этот предел плотности записи, в настоящее время являются сплавы на основе FePt и CoPt. Упорядоченные гранулированные пленки FePt обладают тетрагональной L10 структурой, сильной перпендикулярной одноосной магнитокристаллической анизотропией ($K_U = 7 \cdot 10^6 \, \text{J/m}^3$) и превосходными магнитожесткими характеристиками (коэрцитивная сила 7-15 kOe) [2-5]. В таких материалах наблюдается гигантский аномальный эффект Холла, туннельное магнитосопротивление и достаточно высокое магнитосопротивление. К тому же тонкие нанокомпозитные пленки на основе FePt представляют интерес в качестве материалов для ультраплотной магнитооптической записи, поскольку обладают сильным магнитооптическим откликом в коротковолновом диапазоне [6]. Совсем недавно была предложена новая возможность использовать гранулированные пленки FePt как магнитооптический материал, внедренный между прозрачными диэлектрическими слоями, в одномерных магнитофотонных кристаллах [7–9].

Оптические магнитооптические свойства магнитной прослойки в подобных структурах должны отвечать следующим условиям: высокое пропускание и фарадеевское вращение в режиме пропускания или сильное отражение и керр-вращение в случае отражения. Однако сформировать L10 пленку не так просто. Пленки FePt, полученные с помощью испарения или распыления, не упорядочены и требуют высокотемпературной обработки порядка 800°C, чтобы достичь упорядоченного состояния. Иными словами, для получения качественных гранулированных пленок, обладающих заданными характеристиками, необходимо понимание происходящего в процессе отжига деформаций микроструктуры, изменений кристаллической, электронной и магнитной структур. Поэтому комплексное исследование физических свойств подобных образцов является необходимым и представляет значительный интерес.

В настоящей работе представлены результаты экспериментальных исследований структурных, магнитных, оптических и магнитооптических (MO) свойств гранулированных пленок $(FePt)_{1-x}(SiO_2)_x$ в неупорядоченном состоянии и после температурной обработки. Особое внимание уделено взаимосвязи между магнитооптическим откликом и микроструктурой сплава.

2. Эксперимент

Гранулированные пленки $(FePt)_{1-x}(SiO_2)_x$ (где x — объемное содержание SiO₂, варьируется от 30 до 77%) были изготовлены методом последовательного магнетронного распыления с мозаичной мишени Fe с вкрап-

Puc. 1. a — спектральные зависимости ТКЕ для неупорядоченных гранулированных пленок (FePt)_{1-x}(SiO₂)_x, где a_H — фактор недомагничивания среды. x, % и a_H : 32.0 и 1 (I), 42.3 и 1 (2), 51.1 и 0.55 (3), 55.9 и 0.5 (4), 57.2 и 0.45 (5), 61.4 и 0.3 (6), 64.8 и 0.25 (7), 73.4 и 0.2 (8). b — ТКЕ эффект при разных длинах волн падающего света и магнитосопротивление в зависимости от концентрации SiO₂ в составе образцов.

лениями Pt на стеклянную подложку (Corning N 1737). Процесс распыления происходит в камере, где поддерживалось базовое давление 1.2 · 10⁻⁷ Тогг. Во время изготовления в камеру подавался поток аргона высокой чистоты под давлением 8 m · Torr. Затем образцы были отожжены в вакууме $(1.0 \cdot 10^{-5} \text{ Torr})$ при температуре 700°С в течение 30 минут. При изучении концентрационных зависимостей электросопротивления и магнитосопротивления гранулированных пленок был определен порог перколяции $x_{perc} = 57\%$, это концентрация SiO₂, вблизи которой наблюдается ярко выраженный максимум магнитосопротивления. Магнитооптические свойства изучались в геометрии экваториального эффекта Керра (TKE — transversal Kerr effect), состоящего в изменении интенсивности линейно-поляризованного света, отраженного от образца при его перемагничивании. Изменения ТКЕ проводились на автоматизированном магнитооптическом спектрометре динамическим методом в диапазоне энергии падающего света от 0.5 до 4.5 eV. Амплитуда переменного магнитного поля при измерениях ТКЕ достигала 2.5 kOe. Оптические свойства гранулированных пленок измерялись эллипсометрическим методом в диапазоне энергий падающего света от 0.5 до 4.5 eV. Магнитные свойства были изучены с помощью вибрационного магнетометра; максимальное значение приложенного магнитного поля составляло 20 kOe.

3. Результаты и обсуждение

Спектральные зависимости ТКЕ для неупорядоченных гранулированных пленок FePt/SiO₂, представленные на рис. 1, a, наглядно демонстрируют, насколько сильно влияет уменьшение объема магнитной фазы на амплитуду ТКЕ и форму кривых. Подобные изменения величины

и формы эффекта, вызванные вариациями состава образцов, являлись обычными и для гранулированных систем, изученных ранее [10–13]. Спектры образцов, в которых преобладает металлическая составляющая, имеют характерные особенности: широкий максимум в районе 2 eV, который обычно наблюдается для ТКЕ спектров железа и его сплавов, и отрицательный пик в районе 3.9 eV. С увеличением концентрации SiO₂ форма кривых ТКЕ изменяется, наблюдается рост эффекта в районе 3.9 eV и появление новой особенности в "красной" области спектра (1.2 eV). Отметим, что наиболее сильные изменения хода спектральных зависимостей обнаружены

Рис. 2. ТКЕ спектры, рассчитанные в рамках приближения эффективной среды ЕМА [14], для гранулированных пленок (FePt)_{1-x}(SiO₂)_x (x — концентрация SiO₂, L — фактор формы FM частиц, a_H — фактор недомагничивания среды). x, %, L и a_H : 61.4, 0.53 и 0.3 (1), 57.2, 0.45 и 0.45 (2), 55.9, 0.40 и 0.5 (3), 51.1, 0.45 и 0.55 (4), 42.3, 0.43 и 1 (5), 32, 0.33 и 1 (6).

для двух образцов x = 55.9 и 57.2%, концентрация диэлектрической компоненты в которых наиболее близка к порогу перколяции. Концентрационные зависимости эффекта Керра, представленные на рис. 1, *b* при некоторых выделенных значениях энергии света, не монотонны и демонстрируют резкий излом при $x \sim 57\%$, наиболее сильно выраженный в инфракрасной (IR) области спектра. Эта особенность магнитооптических спектров (усиление магнитооптического отклика вблизи порога перколяции в ближней IR области спектра), наблюдавшаяся нами ранее в нанокомпозитах ферромагнитный металл-диэлектрик [14], позволяет достаточно точно определять порог перколяции, не применяя другие методы исследований.

Полученные экспериментальные зависимости ТКЕ удалось качественно объяснить в рамках простого приближения эффективной среды (ЕМА — effective media approximation). Согласно теории ЕМА, магнитооптические спектры могут быть рассчитаны как функция оптических и МО параметров компонент сплава, коэффициента объемного заполнения магнитных частиц f и фактора формы L [15].

Алгоритм вычислений можно представить следующим образом [16]. В линейном приближении по намагниченности эффективный тензор диэлектрической проницаемости (TDP — tensor of dielectric permittivity) ферромагнитного гранулированного сплава может быть записан как

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon^{\text{EMA}} & i\varepsilon'^{\text{EMA}} & 0\\ -i\varepsilon'^{\text{EMA}} & \varepsilon^{\text{EMA}} & 0\\ 0 & 0 & \varepsilon^{\text{EMA}} \end{pmatrix}.$$
 (1)

В пределах малых полей и для эллипсоидальных частиц выражения для диагональной и недиагональной части TDP в EMA выглядят следующим образом:

$$f\left(\varepsilon^{1} - \varepsilon^{\text{EMA}}\right) / \left(\varepsilon^{\text{EMA}} + \left(\varepsilon^{1} - \varepsilon^{\text{EMA}}\right) L_{j}\right) + (1 - f)\left(\varepsilon^{0} - \varepsilon^{\text{EMA}}\right) / \left(\varepsilon^{\text{EMA}} + \left(\varepsilon^{0} - \varepsilon^{\text{EMA}}\right) L_{j}\right) = 0,$$
(2)

$$f\left(\varepsilon'^{\text{EMA}} - \varepsilon'^{1}\right) / \left[\varepsilon^{\text{EMA}} + \left(\varepsilon^{1} - \varepsilon^{\text{EMA}}\right)L_{j}\right]^{2} + (1 - f)\varepsilon'^{\text{EMA}} / \left(\varepsilon^{\text{EMA}} + \left(\varepsilon^{0} - \varepsilon^{\text{EMA}}\right)L_{j}\right]^{2} = 0, \quad (3)$$

где $\varepsilon^1 = \varepsilon_1^1 - i\varepsilon_2^1$ и $\varepsilon'^1 = \varepsilon'_1^1 - i\varepsilon'_2^1$ — соответственно диагональная и недиагональная части TDP магнитной компоненты, а $\varepsilon^0 = \varepsilon_1^0 - i\varepsilon_2^0$ — диэлектрическая проницаемость немагнитной компоненты. При моделировании использованы диагональные и недиагональные части TDP, определенные при помощи экспериментальных оптических и магнитооптических данных для Fe₅₀Pt₅₀ и SiO₂. Также при расчетах был введен фактор недомагничивания среды — $a_H = M(H)/M_S$, где M(H) и M_S — магнитные моменты в поле H и H_S соответственно. Учет a_H позволяет смоделировать спектры ТКЕ, измеренные в магнитных полях H, меныших поля насыщения ($\delta(H) = a_H \delta(H_S)$). При сравнении спектров экваториального эффекта Керра на рис. 1, a и 2 очевидно, что учет формы металлических частиц сплава (FePt)_{1-x}(SiO₂)_x позволяет качественно описать экспериментальные данные в широком диапазоне концентраций. Заметим, что при моделировании ТКЕ спектров нанокомпозитов аморфный металл-диэлектрик [14] требовались более сложные приближения для описания эффективной среды (симметризованное приближение Максвелла–Гарнетта).

Температурная обработка гранулированных пленок $(FePt)_{1-x}(SiO_2)_x$ в вакууме вызывает фазовый переход из неупорядоченного состояния в упорядоченную тетрагональную L10 структуру, обладающую сильной магнитокристаллической анизотропией [17,18]. Интересно проследить, как изменяются процессы упорядочения в результате отжига в нанокомпозитах $(FePt)_{1-x}(SiO_2)_x$. В ходе исследования спектральных зависимостей ТКЕ для отожженных при 700°С образцов было обнаружено, что отжиг значительно меняет характер кривых ТКЕ (рис. 3, a). Эффект становится отрицательным во всем диапазоне энергий падающего света и демонстрирует две основные особенности: в ультрафиолетовой области спектра (3.8 eV) и в IR области (1.2 eV). Влияние отжига по-разному сказалось на поведении спектров ТКЕ пленок с x больше и меньше x_{perc}. Наблюдались значительное увеличение эффекта (на порядок) для пленок с x = 69 и 73.4% и существенное уменьшение эффекта для пленок с x = 55.9 и 57.2%. Концентрационные зависимости ТКЕ для отожженных образцов также не монотонны, как и для неупорядоченных, но в данном случае излом наблюдается при $x \sim 70\%$ (рис. 3, *b*) и не совпадает с x_{perc}, определенным по максимуму магнитосопротивления.

Изучение кривых намагничивания в сильных полях и зависимостей ТКЕ от магнитного поля позволяет предположить, что подобные изменения эффекта Керра вызваны тем, что характер структурного перехода в пленках зависит от концентрации магнитной составляющей. Сравнение кривых намагничивания для неупорядоченных и отожженных образцов (рис. 4) показывает, что после отжига некоторые гранулированные пленки становятся более мягкими (68 < x < 73%), другие же наоборот более магнитожесткими ($x \sim 57\%$). Термообработка нанокомпозитов FePt/SiO2 предположительно дает начало структурному переходу FM компоненты из неупорядоченной кубической объемно-центрированной фазы в упорядоченную тетрагональную [17,18]. Однако, анализ полевых зависимостей ТКЕ (вставки на рис. 4) и кривых намагничивания показывает, что упорядочение не происходит, если концентрация металлической компоненты в сплаве невысока (x = 68.9%), поскольку кривые намагничивания таких образцов после отжига становятся магнитомягкими. Увеличение концентрации

Рис. 3. *а* — спектры ТКЕ для гранулированных пленок (FePt)_{1-x} (SiO₂)_x, отожженных при 700°С в течение 30 минут, *x*, %: 55.9 (1), 57.2 (2), 64.8 (3), 68.9 (4), 73.4 (5), 75.1 (6), 77.0 (7). *b* — концентрационные зависимости ТКЕ эффекта и коэрцитивности для данных отожженных нанокомпозитов.

Рис. 4. Кривые намагничивания и полевые зависимости ТКЕ (вставки) для неупорядоченных и отожженных при 700°C гранулированных пленок (FePt)_{1-x}(SiO₂)_x, концентрация диэлектрической компоненты в которых: x = 68.9 (*a*) и 55.9% (*b*).

FM компоненты (x = 55.9%) инициирует сцепление между гранулами и ускоряет процесс упорядочения [19], вследствие чего увеличивается магнитная жесткость сплава.

Исследована также эволюция оптических спектров в нанокомпозитах FePt/SiO₂. С ростом концентрации диэлектрической компоненты x (рис. 5) наблюдалось уменьшение значения ε_2 мнимой части диагональной компоненты TDP, наиболее сильно выраженное в ближней IR области спектра, где велик вклад электронов проводимости. Подобное поведение характерно для всех гранулированных нанокомпозитов. Действительная часть диагональной компоненты TDP, ε_1 меняет знак и становится меньше по величине по сравнению с однородным сплавом (рис. 6). Как для спектральных зависимостей ε_1 , так и для кривых ε_2 была замечена

дополнительная особенность в IR области для пленок с большой концентрацией диэлектрической составляющей. Эти особенности связаны, вероятно, с возникновением интерференции света в пленках при увеличении прозрачности нанокомпозитов. Сравнение спектральных зависимостей ε_1 и ε_2 для неупорядоченных и отожженных пленок показывает, что термообработка в большей степени влияет на оптические свойства нанокомпозитов с $x \sim x_{perc}$ и практически не изменяет оптических параметров пленок с большой диэлектрической составляющей. Такое поведение оптических спектров подтверждает, что структурные изменения, связанные с упорядочением в металлических гранулах в результате отжига, происходят только в нанокомпозитах с достаточно большими размерами гранул, т. е. с достаточно низкой концентрацией SiO₂. Изменение оптических и магни-

Рис. 5. Спектральные зависимости ε_2 — мнимой части диагональной компоненты тензора диэлектрической проницаемости для необработанных (светлые символы) и отожженных (темные символы) гранулированных пленок (FePt)_{1-x}(SiO₂)_x.

Рис. 6. Спектральные зависимости ε_1 — действительной части диагональной компоненты тензора диэлектрической проницаемости для необработанных (светлые символы) и отожженных (темные символы) гранулированных пленок (FePt)_{1-x}(SiO₂)_x.

тооптических параметров (изменение вида спектров), а также увеличение магнитной жесткости (изменение вида кривых намагничивания), вызванное ростом магнитной кристаллической анизотропии в упорядоченном сплаве FePt, является следствием такого структурного перехода в FM гранулах. В сплавах с малыми размерами металлических гранул структурного перехода не происходит, однако, распределение частиц по размерам в результате отжига, по-видимому, становится более однородным, вследствие вариации размера частиц. Другими словами, в процессе упорядочения изменяется микроструктура сплава, и гранулированные пленки в магнитном отношении становятся более мягкими, что и наблюдается в эксперименте (рис. 4).

4. Заключение

В ходе исследований магнитных, магнитооптических и оптических свойств гранулированных сплавов FePr/SiO₂ наблюдается значительное усиление MO отклика в ближней IR области для сплавов, концентрация металлической компоненты в которых близка к порогу перколяции.

Теоретическое моделирование спектральных зависимостей ТКЕ в приближении эффективной среды ЕМА показывает, что учет формы металлических частиц позволяет получить качественное описание экспериментальных кривых.

Изменение оптических, магнитооптических и магнитных свойств в результате термообработки нанокомпозитов обусловлено структурным переходом, происходящим в процессе упорядочения только в тех нанокомпозитах, металлические гранулы которых обладают достаточно большими размерами.

Список литературы

- D.N. Lambeth, E.M.T. Velu, G.N. Bellesis, L.L. Lee, D.E. Lauglin. J. Appl. Phys. 79, 8, 4496 (1996).
- [2] O.A. Ivanov, L.V. Solina, V.A. Demshina, L.M. Magat. Phys. Met. Metalloved. 35, 81 (1973).
- [3] K. Inomata, T. Sawa, A. Hashimoto. J. Appl. Phys. 64, 2537 (1988).
- [4] K. Watanabe, H. Masumoto. Trans. Jpn. Inst. Met. 26, 3612 (1985).
- [5] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser. Science 287, 1989 (2000).
- [6] A. Cebollada, D. Weller, J. Sticht, G.R. Harp, R.F.C. Farrow, R.F. Marks, R. Savoy, J.C. Scott. Phys. Rev. B 50, 3419 (1994).
- [7] I.L. Lyubchanskii, N.N. Dadoenkova, M.I. Lyubchanshkii, E.A. Shapovalov, Th. Rasing. J. Phys. D: Appl. Phys. 36, R277 (2003).
- [8] M. Inoue, T. Fujii. J. Appl. Phys. 81, 5659 (1997).
- [9] H. Kato, M. Inoue. J. Appl. Phys. 91, 7017 (2002).
- [10] E. Gan'shina, A. Granovsky, V. Gushin, M. Kuzmishev, P. Podrugin, A. Kravetz, E. Shipil. Physica A 241, 45 (1997).
- [11] E. Gan'shina, R. Kumaritova, A. Bogorodisky, M. Kuzmishev, S. Ohnuma. J. Magn. Soc. Japan 23, 379 (1999).
- [12] A.B. Granovsky, E.A. Gan'shina, A.N. Vinogradov, I.K. Rodin, A.N. Yurasov, H.R. Khan. Phys. Met. Metallograph. 91, Suppl. 1, S52 (2001).
- [13] V.G. Kravets, A.K. Petford-Long, A.F. Kravets. J. Appl. Phys. 4, 87 (2000).
- [14] Е.А. Ганьшина, М.В. Вашук, А.Н. Виноградов, А.Б. Грановский, В.С. Гущин, П.Н. Щербак, Ю.Е. Калинин, А.В. Ситников, Ch.-O. Kim, Ch.G. Kim. ЖЭТФ **125**, *5*, 1172 (2004).
- [15] D.A.G. Bruggeman. Ann. Phys. (Leipzig) 24, 636 (1935).
- [16] A. Akinaga, M. Mizuguchi, T. Manado, E. Ganshina, A. Granovsky, I. Rodin, A. Vinogradov, A. Yurasov. J. Magn. Magn. Mater. 242–245, 470 (2002).
- [17] C.P. Luo, D.J. Sellmyer. J. Appl. Phys. 75, 3162 (1999).
- [18] R.A. Ristau, K. Barmak, L.H. Lewis, K.R. Coffey, J.K. Howard. J. Appl. Phys. 86, 4527 (1999).
- [19] T. Saito, O. Kitakami, Y. Shimada. J. Magn. Magn. Mater. 239, 310 (2002).