Неэмпирический квантово-химический расчет ГЭП в позициях ядер ⁵¹V в щелочных метаванадатах

© Л.С. Воротилова, Л.В. Дмитриева, С.А. Лавров, Б.Ф. Щеголев

Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия

(Поступила в Редакцию 6 декабря 2001 г.)

Проведен ab initio расчет тензора ГЭП в позиции ядра ванадия в рамках кластерной модели для цепочечных ванадатов состава XVO₃ (X = Li, Na, K). Сравнение с экспериментом показало возможность рассмотрения небольших кластеров — $(VO_4)^{3-}$ и $(V_3O_{10})^{5-}$ — в кристаллах этого типа. Проанализирована устойчивость результатов при увеличении кластеров.

Работа частично поддержана проектом ФЦП "Интеграция" (№ А0147), а также проектом Российского фонда фундаментальных исследований (грант № 00-02-16919).

В настоящее время актуальным является вопрос о возможности корректного расчета параметров спектров ЯМР квадрупольных ядер в кристаллах в рамках квантово-химических кластерных моделей. Нами было показано, что при правильном выборе базисных функций и достаточно точных структурных данных удается получить результаты, хорошо описывающие экспериментальные спектры для ядер ²⁷ Al и ^{47,49} Ti в кислородных октаэдрах [1,2]. Для таких кластерных неэмпирических расчетов использовались программы GAMESS [3] и GAUSSIAN-94.

Представляет интерес распространить эту методику расчета на кислородные соединения ванадия, так как, во-первых, оксиды ванадия и ванадаты достаточно много изучались с помощью ЯМР, а во-вторых, в последние годы синтезированы новые соединения, содержащие ванадиево-кислородные комплексы, обладающие необычными свойствами и перспективные для применения в различных областях техники. Так, сейчас особое внимание привлекли оксиды ванадия типа NaV₂O₅, CaV₂O₅, MgV₂O₅ в связи с их низкотемпературными магнитными свойствами и фазовыми переходами [4,5], а также некоторые смешанные ванадаты, обладающие высокой ионной проводимостью [6].

Как правило, координационное состояние ионов V^{5+} в кислородном окружении — тетраэдр VO₄ или тригональная бипирамида VO₅, причем эти комплексы могут образовывать простые или двойные цепи, слои и другие более сложные структуры.

В данной работе рассматривались кристаллы состава XVO_3 (X = Li, Na, K), содержащие бесконечные простые цепи из тетраэдров VO₄. Целью работы было проведение ab initio расчетов (и сравнение результатов с имеющимися экспериментальными данными) градиента электрического поля (ГЭП) в позиции ядра ванадия при разном выборе кластера и различных базисных функциях на V и O. Малым вкладом в ГЭП окружающей кластер кристаллической решетки по аналогии с работами [1,2] пренебрегали.

1. Структурные модели и методика расчета

Щелочные метаванадаты X^+VO_3 ($X^+ = Li^+$, Na^+ , K^+) имеют цепочечную структуру (рис. 1). Между цепями, построенными из связанных вершинами тетраэдров VO₄,

Рис. 1. Структура кристалла KVO₃. a — элементарная ячейка и ориентация тензора ГЭП в позиции ⁵¹V. b — кластер $(V_3O_{10})^{5-}$.

размещаются щелочные катионы, которые занимают два типа позиций. Пространственная группа симметрии ванадатов лития и натрия¹ — C12/c1 [7] и C1c1 [8] (моноклинная сингония), ванадата калия — *Pbcm* (ортором-

¹ Рассматривали только модификацию α – NaVO₃.

Соединение	Параметры ячейки, Å	Длины связей V–O, Å	Литературная ссылка
LiVO ₃	a = 10.158 $b = 8.417 \ (\gamma = 110.5^{\circ})$ c = 5.885	1.6279; 1.6617; 1.7638; 1.8480	[7]
NaVO3	a = 10.557 $b = 9.469 \ (\gamma = 108.4^{\circ})$ c = 5.880	V1: 1.6249; 1.6442; 1.8045; 1.8102 V2: 1.6467; 1.6665; 1.7942; 1.8126	[8]
KVO3	a = 5.176 b = 10.794 c = 5.680	1.6396; 1.6432; 1.8062 × 2	[9]

Таблица 1. Структурные параметры кристаллов XVO₃

бическая сингония) [9]. Длины связей V–O в тетраэдрах показаны в табл. 1.

Расчеты ГЭП на ядрах ⁵¹V проводились для заряженных кластеров двух типов: минимального — (VO₄)³⁻, состоящего из одного тетраэдра с указанными в табл. 1 длинами связей, и расширенного — (V₃O₁₀)⁵⁻, содержащего три соседних тетраэдра. Во втором случае ГЭП рассчитывался на центральном ядре ванадия. Отсутствие элементов симметрии в позиции ванадия влечет за собой в общем случае произвольную ориентацию тензора ГЭП, а следовательно, и тензора квадрупольного взаимодействия относительно кристаллографических осей. В связи с этим для сравнения результатов расчета с экспериментом необходимо было использовать программу, представляющую тензор ГЭП в кристаллических осях. Все расчеты выполнялись по программе GAMESS [3] в рамках неэмпирического метода МО ЛКАО ССП (Хартри–Фока–Рутаана).

Особое внимание было уделено выбору базисных функций на атомах ванадия и кислорода. Для V опробован атомный базис (13S7P5D) [10], который в сочетании с базисом типа triple-zeta на O) успешно применялся ранее для кластерных расчетов магнитных свойств ядра другого переходного элемента — титана, находящегося в кислородном октаэдре [2]. Однако в данном случае (V в кислородном тетраэдре) лучшие результаты получены при использовании и для V, и для O стандартных базисных наборов типа triple-zeta, дополненных также стандартными поляризующими и диффузными функциями (6 – 311 + +G(d)).

2. Результаты кластерных расчетов

а) KVO₃. В метаванадате калия атомы ванадия находятся в плоскости симметрии, перпендикулярной направлению оси **с** кристалла. Поэтому две главные оси тензора ГЭП должны лежать в кристаллической плоскости **ab**, а третья — параллельно оси **c**. Эксперимент [11] и расчет показывают, что этой третьей осью является ось **Y** тензора (табл. 2, 3). Параметры тензора, рассчитанные даже для минимального кластера $(VO_4)^{3-}$, имеют вполне разумные значения. Переход к расширенному кластеру $(V_3O_{10})^{5-}$ улучшает согласие с экспериментом: расхождение по величине компонент тензора уменьшается до 10%, а по ориентации осей в плоскости **ab** — до 4° (табл. 2, 3).

b) NaVO₃, LiVO₃. Метаванадаты лития и натрия, как указывалось выше, имеют моноклинную симметрию. Причем в LiVO₃ все атомы ванадия структурно эквивалентны, в то время как в NaVO₃ существуют две неэквивалентные позиции V. Выбор системы ортогональных осей для проведения расчетов (xyz) соответствовал осям вращения кристаллов в экспериментальных работах (**a*****bc**) [12,13]:

$$x \parallel \mathbf{a}^*, y \parallel \mathbf{b}, z \parallel \mathbf{c},$$

где **b**, **c** — кристаллические оси, **a**^{*} перпендикулярна плоскости **bc**.

В табл. 2 приведены главные значения тензора ГЭП на ⁵¹V, параметры асимметрии и углы Эйлера между

Таблица 2. Рассчитанные параметры тензора ГЭП в позиции ^{51}V для XVO_3

Соединение, кластер	V_{zz} , a.u.	η	Углы Эйлера, deg	
$\begin{array}{c} LiVO_{3} \\ (VO_{4})^{3-} \\ (V_{3}O_{10})^{-5} \end{array}$	0.3156(3.70)*	0.55	90, 90, 46	
	0.1915(2.23)	0.78	87, 84, 70	
$\begin{array}{c} NaVO_{3} \\ (VO_{4})^{3-}(1) \\ (VO_{4})^{3-}(2) \\ (V_{3}O_{10})^{5-}(1) \end{array}$	0.3299(3.87)	0.99	85, 80, 32	
	0.2709(3.18)	0.81	79, 81, 24	
	0.2267(2.78)	0.91	74, 63, 42	
$\begin{array}{c} KVO_{3} \\ (VO_{4})^{3-} \\ (V_{3}O_{10})^{5-} \end{array}$	0.4543(5.33)	0.48	90, 75, 0	
	0.3275(3.84)	0.58	90, 48, 0	

* В скобках даны рассчитанные значения константы квадрупольного взаимодействия C_O (в MHz) при Q = 0.05b.

			1	1	1
Соединение	<i>Т</i> ,К	C_Q, MHz	η	Углы Эйлера, deg	Литературная ссылка
LiVO ₃					
Монокристалл	300	3.58(3) 3.30	0.34(3) 0.82	74, 67, 46 98, 72, 47	[12] [15]
Поликристалл (MAS NMR)	300	3.18(7)	0.87		
NaVO ₃					
Монокристалл	77	3.70(5)	0.52(2)	79, 62, 41	[13]
Поликристалл	300	3.80(10)	0.46(4)		[15]
(MAS NMR)					
Поликристалл (NQR)	300	3.745(3)	0.489(3)		[16]
KVO ₃					
Монокристалл	300	4.22(15)	0.65(15)	90, 52, 0	[11]
Поликристалл	300	4.20(10)	0.80(5)		[15]
(MAS NMR)					
Поликристалл	77	4.16(10)	0.87(3)		[14]
Поликристалл (NQR)	300	4.201(2)	0.794(1)		[16]

Таблица 3. Экспериментальные [11–16] параметры тензора eQV_{ik}/h для ⁵¹V в ванадатах XVO₃

осями тензора *XYZ* и осями вращения кристаллов **a*****b**с для NaVO₃ и LiVO₃. Видно, что расчеты ГЭП для двух неэквивалентных позиций ⁵¹V в метаванадате натрия дают близкие параметры тензоров как по величине, так и по ориентации. Экспериментально эти тензоры трудно различимы, и поэтому в работах [13,15] приводится "средний" тензор.

Сравнение расчетов с экспериментом для метаванадата натрия (табл. 3) показывает, что минимальный кластер (VO₄)³⁻ лучше описывает константу квадрупольной связи, а расширенный (V₃O₁₀)⁵⁻ с большой точностью (1–5°) передает ориентацию главных осей тензора. Заметно хуже согласие расчета с экспериментом для параметра асимметрии. Аналогичные результаты получены и для метаванадата лития: размер кластера существенно не меняет уровень согласия расчета с экспериментом (табл. 2, 3).

Экспериментальные параметры квадрупольного тензора eQV_{ik}/h для ядер ⁵¹V в XVO₃

Компоненты тензора квадрупольного расщепления для ванадия в ванадатах могут быть получены при исследовании спектров ЯМР как монокристаллов, так и поликристаллических образцов. Однако для сравнения с расчетом бо́льшую ценность представляют результаты, полученные на монокристаллах, поскольку они содержат информацию не только о главных значениях тензора ГЭП, но также и об ориентации его главных осей. Это оказывается существенным и с точки зрения выбора кластера, и для проверки общей применимости рассматриваемой модели для описания квадрупольного взаимодействия ядер ⁵¹V с ГЭП кристалла. Таким образом, мы опирались в основном на результаты работ [11–13], в которых монокристаллы LiVO₃, NaVO₃, KVO₃ исследовались стационарным методом на низких частотах. Условия низких частот (соответственно низких магнитных полей) позволили не учитывать тензор химического сдвига при расчете квадрупольных параметров.

На рис. 2 в качестве примера приведена ориентационная зависимость положения боковых переходов ядер ⁵¹V и ²³Na в NaVO₃ при повороте кристалла вокруг оси **b** (вектор **H**₀ поворачивали в плоскости **ac** на 180°). Поскольку спин ⁵¹V равен 7/2, можно наблюдать три пары сателлитов: $\pm 3/2 \leftrightarrow \pm 1/2, \pm 5/2 \leftrightarrow \pm 3/2, \pm 7/2 \leftrightarrow \pm 5/2$. Для ²³Na (спин равен 3/2) спектр состоит помимо центральной линии из одной пары сателлитов $\pm 3/2 \leftrightarrow \pm 1/2$, но это ядро занимает две разные кристаллографические позиции с разными параметрами расщепления. Поэтому видны два спектра натрия.

Исследование ориентационных зависимостей положения резонансных линий в трех взаимно перпендикулярных плоскостях дает возможность получить главные значения тензора eQV_{ik}/h и направляющие косинусы главных осей путем диагонализации первоначального недиагонального тензора [13]. Эти результаты приведены в табл. 3.

Независимое определение параметров тензора eQV_{ik}/h в ванадатах из спектров, полученных в высоких полях при вращении под магическим углом [15], также показано в табл. 3. Значения $C_Q \equiv eQV_{zz}/h$ и η близки

Рис. 2. Ориентационная зависимость положения резонансных линий 51 V и 23 Na при повороте вектора магнитного поля H_0 в плоскости **ас.** Сплошные кривые относятся к центральному и боковым переходам спектра 51 V, штриховые — к спектру двух позиций 23 Na.

к данным, приведенным для монокристаллов; заметное отличие в константе C_Q для NaVO₃ получено лишь в одной работе [6]. Учитывая то, что близкие величины C_Q , η найдены при комнатной температуре и 77 K, можно сделать вывод об отсутствии фазовых переходов в этой температурной области. Это подтверждают и спектры ²³Na.

4. Обсуждение результатов

Сравнение экспериментальных результатов для ядер 51 V в щелочных метаванадатах и теоретических значений параметров тензора ГЭП показало, что выбранная методика расчета достаточно успешна в применении к этим соединениям. Действительно, уже малый кластер, состоящий из одного тетраэдра, дает правильную ориентацию главных осей и близкую к эксперименту константу расщепления C_Q . Увеличение кластера до трех тетраэдров приводит, как правило, к небольшим изменениям параметров (табл. 2), что указывает на устойчивость данной схемы расчета. Некоторые различия в поведении параметров при увеличении кластера можно заметить, если сравнивать моноклинные

кристаллы LiVO₃, NaVO₃ и орторомбический KVO₃: в ванадате калия при переходе к "большому" кластеру все параметры тензора одновременно приближаются к экспериментальным значениям.

Достаточно хорошее совпадение вычисленных и экспериментальных параметров квадрупольного тензора и его ориентации дало основание решить вопрос о выборе единственного решения для тензора ГЭП в метаванадате лития. Наличие двойников в этих кристаллах привело к тому, что при диагонализации тензора eQV_{ik}/h были получены два возможных набора параметров (табл. 3). Сопоставляя их с расчетом, следует выделить как более вероятные следующие значения: $C_O = 3.30$ MHz, $\eta = 0.82$.

Поскольку в рассматриваемых кристаллах ванадиевокислородные тетраэдры не сильно различаются длинами связей V–O (табл. 1), квадрупольная константа C_Q находится в достаточно узком диапазоне 3–4 MHz. Параметр η показывает сильное отличие симметрии от осевой. Можно отметить, что главная ось ГЭП составляет с кристаллической осью с, направленной вдоль цепи, угол, близкий к 90° (в KVO₃ он равен 90°). Таким образом, направление главной оси градиента поля в цепочечных ванадатах задается не длинными мостиковыми связями (длина ~ 1.8 Å), а более короткими поперечными связями (их длина ~ 1.65 Å).

Заметим, что в наших расчетах параметр η заметно отличается от экспериментального. Возможно, неучет окружения кластера, а именно щелочных катионов, в основном и сказывается на величине η . К расхождению может приводить и неточность в определении структурных параметров; известно, что наиболее чувствительным к небольшим отклонениям в координатах атомов является параметр асимметрии тензора ГЭП.

В заключение можно высказать предположение, что описанная методика применима к другим соединениям с тетраэдрическими комплексами VO₄. Это представляет особый интерес в тех случаях, когда экспериментальные спектры ЯМР не дают полного набора параметров.

Авторы выражают благодарность В.С. Касперович за полезные обсуждения результатов работы.

Список литературы

- Л.С. Воротилова, Б.Ф. Щеголев, Л.В. Дмитриева. ФТТ 33, 5, 1527 (1991); Л.С. Воротилова, Л.В. Дмитриева, О.Е. Квятковский, Б.Ф. Щеголев. ФТТ 39, 4, 618 (1997).
- [2] Л.С. Воротилова, Л.В. Дмитриева, Б.Ф. Щеголев. ФТТ 42, 8, 1408 (2000).
- [3] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jesen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Wiindus, M. Dupuis, J.A. Montgomery. J. Comput. Chem. 14, 11, 1347 (1993).
- M. Isobe, Y. Ueda. J. Phys. Soc. Jap. 65, 5, 1178 (1996);
 N. Katoh. J. Phys. Soc. Jap. 68, 1, 258 (1999).
- [5] M.A. Korotin, V.I. Anisimov, T. Saha-Dasgupta, I. Dasgupta. J. Phys.: Cond. Matter 12, 2, 113 (2000).

- [6] F. Delmaire, M. Rigole, E.A. Zhilinskaya, A. Aboukais, R. Hubaut, G. Mairesse. PCCP 2, 19, 4477 (2000).
- [7] R.D. Shannon, C. Calvo. Can. J. Chem. 51, 265 (1973).
- $[8]\;$ A.M. Shaikh. Ferroelectrics 107, 219 (1990).
- [9] F.C. Hawthorme, C. Calvo. J. Sol. State Chem. 22, 2, 157 (1977).
- [10] Hyla-Kryspin, J. Demuynck, A. Strich, M. Benard. J. Chem. Phys. 75, 8, 3954 (1981).
- [11] S.D. Gornostansky, S.V. Stager. J. Chem. Phys. 46, 3, 4959 (1967).
- [12] Л.В. Дмитриева, З.Н. Зонн, Г.А. Румп. ЖСХ **14**, *1*, 30 (1973).
- [13] Л.В. Дмитриева, А.П. Верещагина, З.Н. Зонн, В.А. Пантелеев. В сб.: ЯМР. Изд-во ЛГУ, Л. (1974). В. 5. С. 68.
- [14] S.L. Segel, R.B. Creel. Can. J. Phys. 48, 21–22, 2673 (1970).
- [15] J. Skibsted, N. Chr. Nielsen, H. Bildsoe, H.J. Jakobsen. J. Am. Chem. Soc. 115, 16, 7351 (1993).
- [16] D. Mao, P.J. Bray, G.L. Petersen. J. Am. Chem. Soc. 113, 18, 6812 (1991).