Зонная структура гексагональных диборидов ZrB_2 , VB_2 , NbB_2 и TaB_2 . Сравнение со сверхпроводящим MgB_2

© И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: irshein@mail.ur.ru

(Поступила в Редакцию 26 сентября 2001 г.)

Самосогласованным полнопотенциальным методом LMTO изучены параметры зонной структуры и поверхности Ферми гексагональных диборидов ZrB₂, VB₂, NbB₂ и TaB₂ в сравнении с таковыми для изоструктурного сверхпроводника MgB₂. Анализируются факторы, ответственные за сверхпроводящие свойства AlB₂-подобных диборидов; результаты сопоставлены с предшествующими расчетами и имеющимися экспериментальными данными.

Недавнее открытие [1] критического перехода $(T_c \approx 40 \text{ K})$ в дибориде магния (MgB_2) и получение ряда перспективных сверхпроводящих материалов на его основе (керамики, пленок, протяженных проводов, лент [2]) стимулировали активный поиск новых сверхпроводников (СП) среди родственных соединений, обладающих структурными или химическими "элементами подобия" с MgB₂.

В качестве первых СП-кандидатов рассмотрена группа изоструктурных MgB₂ гексагональных (AlB₂-подобных) диборидов металлов. Основываясь на результатах детальных исследований зонной структуры и механизма спаривания в MgB₂ [2–7], удалось показать, что наиболее перспективными СП-кандидатами являются дибориды металлов I, II групп Периодической системы, например метастабильные CaB₂ [6], LiB₂, ZnB₂ [7]. В работе [8] прогнозируется возможность обнаружения критического перехода ($T_c > 50$ K) в AgB₂ и AuB₂.

Гораздо менее вероятным представляется обнаружение новых СП (с $T_c > 1$ K) среди AlB₂-подобных диборидов *d*-металлов (VB₂) [2–7]. Первое сообщение (1970 г. [9]) о сверхпроводимости в NbB₂ ($T_c = 3.9$ K) в систематических исследованиях [10] СП-свойств серии диборидов MB₂ (M = Ti, Zr, Hf, V, Nb, Ta, Cr) не подтвердилось: согласно [10], их $T_c < 0.7$ K.

Весьма неожиданными явились недавние сообщения [11-13] о достаточно высоких T_c для ZrB₂ (5.5 K [11]), TaB₂ (9.5 K [12]) и NbB₂ (5.2 K [13]). Примечательно, что, изучая идентичные ряды диборидов (TiB₂. ZrB₂, HfB₂, VB₂, NbB₂ и TaB₂ [12] и ZrB₂, NbB₂ и TaB₂ [11]), каждая группа исследователей обнаружила "свой" сверхпроводник (ZrB [11] или TaB₂ [12]), отнеся все остальные MB₂-фазы к несверхпроводящим.

Результаты [12] побудили авторов [14] выполнить детальные исследования температурных зависимостей магнитной восприимчивости и электросопротивления TaB₂. Установлено, что СП-переход для TaB₂ не наблюдается вплоть до $T \sim 1.5$ К. Отличия СП-свойств MgB₂ и TaB₂ обсуждались [14,15] на основе расчетов зонной структуры. Отмечены их существенные различия за счет сильных эффектов гибридизации

Та5*d*–В2*p*-состояний в ТаВ₂ и слабого (по сравнению с MgB₂) элекронного взаимодействия с E_{2g} -модой фононного спектра [14]. Автор [15] объясняет резкое понижение T_c для ТаВ₂ (и отсутствие сверхпроводимости для VB₂) резким уменьшением вкладов В2*p*-состояний в плотность состояний (ПС) на уровне Ферми $N(E_F)$: MgB₂ (0.494) > ТаВ₂ (0.114) > VB₂ (0.043 состояний/eV). Анализируя тонкие особенности мягких рентгеновских В*K*-спектров эмиссии и поглощения MgB₂, NbB₂ и ТаВ₂, авторы [16] отметили принципиальные различия в структуре их прифермиевских краев, где доминируют вклады В2*p*_σ-(MgB₂) или В2*p*_π-состояний (NbB₂, ТаВ₂). Работы, воспроизводящие результаты [11], нам неизвестны.

Как показано в [2-7], сверхпроводимость в MgB₂ и родственных боридах хорошо описывается в рамках теории электрон-фононного взаимодействия. Следовательно, важнейшим фактором формирования этого эффекта являются особенности электронного спектра, прежде всего состав и структура прифермиевских зон.

В настоящей работе мы приводим результаты детального анализа зонной структуры диборидов Zr, V, Nb и Ta в сравнении с данными для сверхпроводящего MgB₂. Как известно, эти дибориды изоструктурны (типа AlB₂, пр. гр. Р6/тт), их кристаллические решетки составлены чередующимися гексагональными монослями металла и графитоподобными сетками бора [17]. Элементарная ячейка содержит три атома (один атом металла и два атома бора). Их основные отличия обусловлены типом металлической подрешетки — электронными конфигурациями атомов металла (Mg — $3s^23p^0$, Zr — $5s^24d^2$, V, Nb, Ta — $(n+1)s^2nd^3$, где n = 3, 4 и 5 соответственно), определяющими рост электронной концентрации (ЭК): $MgB_{2}(8) < ZrB_{2}(10) < VB_{2}$, NbB₂, TaB₂ (11 электронов на ячейку, а также изменения межатомных связей (см. [2,18,19]).

Расчеты зонной струкруты MB_2 выполнены в рамках теории функционала локальной электронной плотности (LDA) самогласованным полнопотенциальным линейным методом muffin-tin-орбиталей (FLMTO) с учетом релятивистских эффектов и спин-орбитальных вза-

Таблица 1. Параметры решетки (Å) диборидов Mg, Zr, V, Nb, Та согласно нашим FLMTO-расчетам в сравнении с данными других расчетов и эксперимента

Либорил	На	ле	Данные других авторов			
дноорид	а	С	c/a	а	с	c/a
MgB ₂	3.04869	3.46637	1.1370	3.083	3.521	1.142 [23]
ZrB ₂	3.16932	3.53126	1.1142	3.170 3.165	3.532 3.547	1.114 [11] 1.12 [23]
VB ₂	3.00678	3.04768	1.0136	2.997 2.998	3.056 3.057	1.0196 [15] 1.02 [23]
NbB ₂	3.18141	3.35693	1.0550	3.116 3.082	3.264 3.243	1.06 [23] 1.0522 [12]
TaB ₂	3.16421	3.32337	1.0503	3.098 3.083 3.097	3.224 3.244 3.225	1.0407 [14] 1.0522 [15] 1.041 [23]

Таблица 2. Дисперсия σ (В $p_{x,y}$)-зон в направлении Г–А и орбитальные вклады в плостность состояний на уровне Ферми (состояний/eV · ячейку) в MB₂-фазах

Фаза	$\Delta E^{\sigma}(\Gamma - \mathbf{A}),$	Плотности состояний на $E_{\rm F}$						
Фаза	eV	Общая	Ms	Mp	Md	Mf	Bs	Вр
MgB_2	0.72	0.719	0.040	0.083	0.138		0.007	0.448
ZrB_2	1.73	0.163	0.001	0.002	0.130		0.00019	0.030
VB_2	2.69	1.379	0.024	0.013	1.255		0.002	0.085
$NbB_2 \\ TaB_2$	2.49	1.074	0.037	0.017	0.818	_	0.012	0.190
	2.61	0.910	0.003	0.016	0.664	0.038	0.011	0.178

Таблица 3. Плотности состояний на уровне Ферми (состояний/eV) для диборидов Mg, Ta, V по данным наших FLMTOрасчетов в сравнении с результатами [14,15]

Фаза	$N(E_{ m F})$						
Ψusu	Наши данные	FP [15]	FPLO [14]				
MgB_2 B2 n	0.719 0.448	0.691 0.494	0.71				
TaB_2	0.910	0.966	0.91				
Ta5 <i>d</i> B2 <i>p</i>	0.664 0.178	0.647 0.114					
VB_2 V3d	1.379 1.255	1.359 1.235					
B2p	0.085	0.043					

Примечание. Приведены полная ПС и вклады парциальных Md-и В2*p*-состояний.

имодействий [20,21], с обменно-корреляционным потенциалом согласно [22]. Равновесные параметры ячеек MB₂, полученные в наших расчетах из условия минимума полной энергии системы, приводятся в табл. 1.

1) MgB₂. Как следует из рис. 1 и 2, особенности зонной структуры сверхпроводящего MgB2 определяются В2*p*-состояниями, образующими четыре $\sigma(2p_{x,y})$ - и две $\pi(p_z)$ -энергетические зоны. В2 p_z -состояния ориентированы перпендикулярно сеткам атомов бора и образуют слабые межслоевые π -связи. В2 $p_{x,y}$ -зоны имеют квазидвумерный (2D) тип и формируют плоские участки в направлении Г-А зоны Бриллюэна (ЗБ). Малая дисперсия σ -зон также указывает на незначительные взаимодействия между слоями Mg-B. Две В2*p*_{x,v}-зоны пересекают $E_{\rm F}$ и вносят заметный вклад в ПС на уровне Ферми, являясь ответственными за металлоподобные свойства MgB₂ (табл. 2). Одной из важнейших особенностей MgB₂ является наличие дырочных B2p_{x,v}состояний: в направлении Г-А они находятся выше E_F и образуют цилиндрические элементы поверхности Ферми (П Φ) дырочного типа (рис. 1).

Таким образом, характеристическими элементами зонного спектра MgB₂, критичными по отношению к его СП-свойствам и эффектам внутри- и межслоевых взаимодействий (см. также [2-7]), являются: 1) положение $\sigma(p_{x,y})$ -зон относительно $E_{\rm F}$ (наличие дырочных состояний); 2) величина их дисперсии в направлении $\Gamma - A$ ($\Delta E^{\sigma}(\Gamma - A)$) определяется степенью взаимодействий между слоями металл-бор); 3) величина и орбитальный состав $N(E_{\rm F})$ (доминирующий вклад σ -состояний атомов графитоподобных сеток бора). Рассмотрим с этих позиций зонную структуру диборидов Zn, V, Nb и Ta. Предварительно отметим, что наиболее очевидным следствием изменения состава металлической подрешетки в ряду диборидов является рост ЭК с последовательным заполнением энергетических зон. Тогда для ZrB₂ уровень Ферми расположен в псевдощели между полностью занятыми связывающими и свободными антисвязывающими состояниями, что определяет максимальную стабильность ZrB2 (а также изоэлектронных и изоструктурных TiB₂ и HfB₂) в ряду AlB₂-подобных фаз и их экстремальные термомеханические характеристики [23], что подтвердили недавние FLMTOрасчеты энергии когезии серии MB_2 -фаз (M = 3d-, 4dи 5*d*-металлы) [18,19].

2) ZrB₂. Как следует из данных рис. 1, 2 и табл. 2, строение прифермиевских краев спектров ZrB2 и MgB2 принципиально отличается. Для ZrB2 характерно следующее: 1) $\sigma(p_{x,y})$ -зоны бора расположены ниже $E_{\rm F}$ (-1.1 eV в точке А ЗБ), соответствующие дырочные состояния отсутствуют; 2) возникает их значительная дисперсия в направлении Γ -А ($\Delta E^{\sigma}(\Gamma$ -А) = 1.73 eV), σ -зоны утрачивают 2D-тип в результате образования сильных ковалентных *d*-*p*-связей между слоями металл-бор, в которых принимают участие частично заполненные $\pi(p_7)$ -зоны; 3) величина $N(E_{\rm F})$ по сравнению с MgB₂ резко уменьшается (с 0.719 до 0.163 состояний/eV), причем максимальный вклад (~ 80%) в $N(E_{\rm F})$ вносят Zr4d-состояния, вклады состояний бора гораздо меньше (~ 18%). Изменение типа прифермиевских состояний $2D \rightarrow 3D$ отчетливо прослеживается при срав-

Рис. 1. Энергетические зоны и поверхности Ферми $MgB_2(a)$ и $ZrB_2(b)$.

Рис. 2. Полные (I) и локальные плотности валентных s- (1), p- (2), d- (3) и f-состояний (4) подрешеток металла (II) и бора (III) для MgB₂ (a) и ZrB₂ (b).

Рис. 3. Энергетические зоны и поверхности Ферми VB₂ (a), NbB₂ (b) и TaB₂ (c).

Рис. 4. Полные (I) и локальные плотности валентных *s*- (*1*), *p*- (*2*), *d*- (*3*) и *f*-состояний (*4*) подрешеток металла (II) и бора (III) для VB₂ (*a*), NbB₂ (*b*) и TaB₂ (*c*).

Физика твердого тела, 2002, том 44, вып. 10

Рис. 4 (продолжение).

нении структуры ПФ MgB₂ и ZrB₂ (рис. 1). Видно, что $\Pi \Phi ZrB_2$ состоит из трех типов фигур, определяемых смешанными Zr4d, 5p-Вp-состояниями: a) 3Dфигура вращения вокруг прямой по направлению Г-А с проводимостью дырочного типа; b) 3D-фигура около центра отрезка М-К с проводимостью электронного типа; с) малые участки 3D-типа с электронной проводимостью.

3) VB₂, NbB₂ и TaB₂. Энергетические зоны, ПФ и ПС этих изоэлектронных и изоструктурных диборидов показаны на рис. 3 и 4, некоторые параметры электронной структуры приведены в табл. 2 и 3. Указанные выше различия ZrB₂ и MgB₂ (заполнение $\sigma(p_{x,y})$ -зон, уменьшение вкладов В2p-состояний в $N(E_{\rm F})$ и изменение $2D \rightarrow 3D$ типа прифермиевских состояний) характерны и для VB₂, NbB₂, TaB₂. Кроме того, их общими особенностями (в отличие от ZrB₂) являются: 1) частичное заполнение антисвязывающей *d*-полосы, обеспечивающей металлический тип проводимости; 2) значительный рост $N(E_{\rm F})$; 3) рост заполнения $\pi(p_7)$ -зон. Характерен вид трансформации ПФ, которая, например, для TaB₂ (рис. 3) содержит двойные непересекающиеся сфероиды вращения вокруг точки А ("внутренний" и "внешний") электронного типа, определяемые 3D-B2pи Ta5d_{xz,yz}-состояниями соответственно. Связывающие $\sigma(p_{x,y})$ -зоны бора расположены ниже $E_{\rm F}$ (-1.3, -2.5, и -2.6 eV — в точке А 3Б для VB₂, NbB₂ и TaB₂ соответственно) и имеют, как и в случае ZrB₂, значительную энергетическую дисперсию $\Delta E^{\sigma}(\Gamma - A)$, которая максимальна для VB₂ (табл. 2).

В изоэлектронном ряду $VB_2 \rightarrow NbB_2 \rightarrow TaB_2$ величина $N(E_{\rm F})$ систематически уменьшается, ее максимальное значение (для VB₂) обусловлено вкладом прифермиевской квазиплоской V3d_{xz,yz}-зоны в направлении Г-М. Наоборот, изменение вклада В2*p*-состояний (антисвязывающих σ - и π -зон) в $N(E_{\rm F})$ в указанном ряду немонотонно: он достигает максимума (0.190) для NbB₂, но остается много меньшим, чем для MgB₂ (0.448 состояний/eV). На большую концентрацию В2*р*-состояний вблизи *E*_F для NbB₂ (по сравнению с ТаВ₂) указывают также данные спектроскопических экспериментов [16].

Таким образом, анализ параметров зонной структуры и ПФ изоструктурных диборидов *d*-металлов (Zr, V, Nb, Ta) позволяет отметить их принципиальные отличия от MgB₂, которые заключаются в следующем: 1) заполнении связывающих $p_{x,y}$ -зон и отсутствии дырочных *σ*-состояний; 2) росте ковалентных взаимодействий между слоями бора и металла (за счет гибридизации B2p-Md-состояний) и утрате квазидвумерного типа энергетическими зонами; 3) изменении величин и орбитального состава $N(E_{\rm F})$, где доминирующими становятся валентные *d*-состояния металлов. Последнее характерно для низкотемпературных СП, например металлоподобных соединений этих *d*-элементов с углеродом, азотом, кремнием (NbN, V₃Si и т.д.), величины T_c которых коррелируют со значениями N(E_F) [24]. В этом случае, исходя из полученных результатов, можно предположить, что наиболее вероятным будет наличие низкотемпературной сверхпроводимости в диборидах V, Nb, Ta; среди них максимальное значение Т_с можно ожидать для VB₂. Если же принять (по аналогии с MgB₂ [2-7]) в качестве основного электронного фактора формирования СП-свойств MB₂ прифермиевскую плотность В2р-состояний, наиболее высокой температурой критического перехода должен обладать NbB2. Отметим, что, согласно модели спаривания, предложенной авторами [25,26], в этом случае следует рассматривать степень заполнения не только σ -, но и π -зон бора. В любом случае наличие СП-перехода для ZrB₂ наименее вероятно, и результаты [11] нуждаются в пересмотре.

Список литературы

- [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, I. Akimitsuet. Nature **410**. 63 (2001).
- А.Л. Ивановский. Успехи химии 70, 9, 811 (2001).
- J. Kortus, I.I. Mazin, K.D. Belaschenko, V.P. Antropov, [3] L.L. Boyer. Phys. Rev. Lett. 86, 20, 4656 (2001).
- [4] J.M. An, W.E. Pickett. Phys. Rev. Lett. 86, 19, 4366 (2001).

- [5] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman. Phys. Rev. B64, 2, 502 (2001).
- [6] K.D. Belashchenko, M. van Schilfgaarde, V.A. Antropov. Cond-matter/0102391 (2001).
- [7] V.P. Antropov, K.D. Belashchenko, M. van Schilfgaarde, S.N. Rashkeev. Cond-matter/0107123 (2001).
- [8] S.K. Kwon, S.J. Youn, K.S. Kim, B.I. Min. Cond-matter/0106483 (2001).
- [9] A.S. Cooper, E. Corenzest, L.D. Longinotti, B.T. Matthias, W.H. Zachariasen. Proc. Natl. Acad. Sci. 67, 4, 313 (1970).
- [10] L. Leyarovska, E. Leyarovski. J. Less. Common Met. 67, 3, 249 (1979).
- [11] В.А. Гаспаров, Н.С. Сидоров, И.Л. Зверькова, М.П. Кулаков. Письма в ЖЭТФ 73, 10, 532 (2001).
- [12] D. Kaczorowski, A.J. Zaleski, O.J. Zogal, J. Klamut. Condmatter/0103571 (2001).
- [13] J. Akimitsu. Abst. 2001 Annual Meeting Phys. Soc. Jap. 3, 4, 533 (2001).
- [14] H. Rosner, W.E. Pickett, S.-L. Drechsler, A. Handstein, G. Behr, G. Fuchs, K. Nemkov, K.H. Muller, H. Eschrig. Condmatter/0106092 (2001).
- [15] P.P. Singh. Cong-matter/0104580 (2001).
- [16] J. Nakamura, N. Yamada, K. Kuroki, T.A. Callcolt, D.L. Ederer, J.D. Denlinger, R.C.C. Pereral. Cong-matter/0108215 (2001).
- [17] Ю.Б. Кузьма. Кристаллохимия боридов. Вища шк., Львов (1983).
- [18] А.Л. Ивановский, Н.И. Медведева, Г.П. Швейкин, Ю.Е. Медведева. Металлофизика и новейшие технологии 20, 1, 41 (1998).
- [19] А.Л. Ивановский, Н.И. Медведева, Ю.Е. Медведева. Металлофизика и новейшие технологии **21**, *I*, 19 (1999).
- [20] M. Methfessel, C. Rodriquez, O.K. Andersen. Phys. Rev. B40, 3, 2009 (1989).
- [21] S.Y. Savrasov. Phys. Rev. B54, 23, 16470 (1996).
- [22] J.P. Perdew, Y. Wang. Phys. Rev. B45, 23, 13244 (1992).
- [23] Г.В. Самсонов, И.М. Виницкий. Тугоплавкие соединения Металлургия, М. (1976).
- [24] С.В. Вонсовский, Ю.А. Изюмов, Э.З. Курмаев. Сверхпроводимость переходных металлов, их сплавов и соединений. Наука, М. (1977).
- [25] M. Imada. Cong-matter/0103006 (2001).
- [26] K. Furukawa. Cond-matter/0103184 (2001).