Особенности сегнетоэлектрических фазовых переходов в монокристаллах твердых растворов $Pb_{0.96}Ba_{0.04}Sc_{0.5}Nb_{0.5}O_3$ и $Pb_{0.94}Ba_{0.06}Sc_{0.5}Nb_{0.5}O_3$

© Л.С. Камзина*, И.П. Раевский, В.В. Еремкин, В.Г. Смотраков

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия Научно-исследовательский институт физики Ростовского государственного университета, 344090 Ростов-на-Дону, Россия

(Поступила в Редакцию 23 октября 2001 г. В окончательной редакции 18 декабря 2001 г.)

Впервые исследованы оптические свойства монокристаллов твердых растворов $Pb_{0.96}Ba_{0.04}Sc_{0.5}Nb_{0.5}O_3$ (PBSN-4) и $Pb_{0.94}Ba_{0.06}Sc_{0.5}Nb_{0.5}O_3$ (PBSN-6). Показано, что спонтанный фазовый переход, имеющий место в PBSN-4 в отсутствие электрического поля, сопровождается острым минимумом оптического пропускания, свидетельствующим о перколяционной природе перехода. На температурной зависимости оптического пропускания в монокристаллах PBSN-6 в отсутствие электрического поля не обнаружено никаких резких изменений. Однако достаточно совсем небольшого электрического поля $\sim 0.4 \, kV/cm$, чтобы индуцировать сегнетоэлектрическое состояние в монокристаллах PBSN-6. Показано, что процесс разрушения индуцированного сегнетоэлектрического состояния является фазовым переходом первого рода, сопровождается аномально узким пиком интенсивности малоуглового рассеяния света (или минимумом оптического пропускания) и проходит по перколяционному типу.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 01-02-17801 и 01-03-33119).

B последнее время свойства композиционноупорядочивающихся сегнетоэлектриков, к которым относятся соединения типа PbB'_{1/2}B''_{1/2}O₃ (где В' — Sc, B" — Nb, Ta) привлекают все большее внимание исследователей. Это связано в первую очередь с тем, что свойства указанных веществ могут изменяться от свойств, присущих нормальным сегнетоэлектрикам, до релаксорных без изменения химического состава соединения. Наличие высокотемпературного фазового перехода порядок-беспорядок в распределении ионов В' и В" в однотипных кристаллографических положениях решетки приводит к тому, что степень упорядочения (s)ионов В' и В" в соединениях может быть разной в зависимости от термообработки образцов или температурного режима выращивания [1,2]. К таким соединениям относятся и монокристаллы скандониобата свинца PbSc1/2Nb1/2O3 (PSN). В кристаллах с дальним порядком ($s \approx 1$) наблюдается четкий фазовый переход и отсутствуют все основные черты, присущие релаксорным соединениям. В разупорядоченном состоянии $(s \rightarrow 0)$ сегнетоэлектрический переход размывается, но даже в этом случае происходит спонтанный фазовый переход из релаксорного (микродоменного) в макродоменное сегнетоэлектрическое состояние при температурах ниже максимума диэлектрической проницаемости ε . Этому спонтанному переходу соответствуют скачок на температурной зависимости $\varepsilon(T)$ [3] и пик малоуглового рассеяния света (MPC), свидетельствующий 0 перколяционной природе перехода [4,5]. В частично упорядоченных соединениях (0 < s < 1) релаксорное состояние охватывает довольно большую область температур и поэтому представляется уникальная возможность проследить взаимосвязь обычного сегнетоэлектрического и релаксорного поведения в одном и том же соединении как в отсутствие электрического поля, так и при приложении внешних воздействий.

Однако получить устойчивое релаксорное поведение, подобное наблюдаемому в классическом релаксоре — магнониобате свинца (PMN), даже при полном беспорядке в расположении ионов Sc^{3+} и Nb⁵⁺ не удается [6]. Для реализации устойчивого релаксорного поведения необходимо дополнительное разупорядочение кристаллической решетки. В керамических образцах PSN, казалось бы, удалось достичь "замороженного" релаксорного состояния с помощью повышения концентрации вакансий по свинцу с 0.2-0.5 аt.%. Однако спонтанный фазовый переход все же имел место, хотя и был сильно размыт [6]. Оставалось неясным, при какой концентрации дефектов возможно "замораживание" релаксорного состояния.

Для усиления релаксорных свойств в керамике PSN в работах [7,8] была предпринята попытка частичного замещения ионов Pb изовалентными ионами Ba. Это обусловлено следующим: 1) концентрацию и равномерность распределения изовалентных примесей в случае частичного замещения свинца барием контролировать проще, чем в случае свинцовых вакансий; 2) можно ожидать, что по мере повышения содержания бария удастся проследить постепенное повышение устойчивости релаксорного состояния в PSN вплоть до его полного "замораживания".

Провести подобные исследования на керамических образцах с разным содержанием бария оказалось затруднительно ввиду сложности получения равновесных твердых растворов Pb_{1-x}Ba_xSc_{0.5}Nb_{0.5}O₃ (PBSN) изза существенного различия реакционных способностей PSN и $BaSc_{0.5}Nb_{0.5}O_3$ (BSN) [9]. Эту трудность удалось преодолеть авторам работ [10,11], которые вырастили монокристаллические образцы твердых растворов $P_{1-x}B_x$ SN (0 < x < 0.58). Оказалось, что в кристаллах с $0 \leqslant x \leqslant 0.04$ на температурной зависимости ε несколько ниже температуры максимума наблюдается спонтанный фазовый переход из релаксорного в макродоменное состояние и сохраняются черты как нормального сегнетоэлектрического поведения, так и релаксорного. Спонтанный фазовый переход проявляется в виде скачка є и появления двупреломления [11]. В кристаллах с x > 0.08наблюдалось типично релаксорное поведение. Особое место отводилось кристаллам с x = 0.06 (PBSN-6). Они занимали промежуточное положение между кристаллами с нормальными сегнетоэлектрическими свойствами (низкое содержание бария) и кристаллами с высоким содержанием Ва, обладающими типичными релаксорными свойствами. Вследствие этого кристаллы PBSN-6 имели достаточно низкую величину порогового поля, чтобы индуцировать в них переход в макродоменное сегнетоэлектрическое состояние [12]. Влияние постоянного электрического поля на диэлектрические и оптические свойства наиболее интересно изучать именно на таких соединениях с низкой величиной порогового поля, так как поле будет по-разному влиять на релаксорные свойства и на характер спонтанного сегнетоэлектрического перехода. Температурные зависимости диэлектрической проницаемости монокристаллов составов PBSN-4 (x = 0.04) и PBSN-6 и их изменения при приложении постоянного электрического поля изучались в работах [11,12]. Наблюдаемые аномалии были не всегда четко выражены, что представляло определенные экспериментальные трудности для их обнаружения.

Более чувствительными для изучения процессов, происходящих при фазовых переходах, являются оптические методы, а именно оптическое пропускание и МРС. Эти методы были успешно применены нами для изучения спонтанного сегнетоэлектрического фазового перехода в кристаллах PSN и PST [5,13,14] и индуцированного фазового перехода в релаксорах PMN и PZN [15]. В стехиометрических кристаллах PST и PSN с разной степенью упорядочения ионов на температурной зависимости интенсивности МРС в отсутствие электрического поля наблюдался узкий пик при температуре спонтанного сегнетоэлектрического фазового перехода, а в кристаллах PMN узкий пик MPC был обнаружен только в присутствии электрического поля. Если фазовый переход происходит по перколяционному типу, то средний размер кластера новой фазы на пороге протекания стремится к размеру образца, формируется крупномасштабная неоднородная структура и фазовый переход должен сопровождаться появлением аномально узких пиков интенсивности MPC и, следовательно, минимумом оптического пропускания. Появление пиков на кривой температурной зависимости интенсивности MPC свидетельствует о перколяционном характере перехода между релаксорным и сегнетоэлектрическим состояниями. Теоретическое описание аномального рассеяния света вблизи точек фазовых переходов первого и второго рода в кристаллах с крупномасштабными неоднородностями приведено в работе [16].

Целью данной работы было изучение влияния постоянного электрического поля на поведение сегнетоэлектрического и релаксорного состояний как в монокристаллах PBSN-6, в которых требуется небольшое электрическое поле, чтобы индуцировать сегнетоэлектрический фазовый переход, так и в монокристаллах PBSN-4, в которых и в отсутствие электрического поля наблюдаются сегнетоэлектрический фазовый переход и релаксорное поведение.

1. Выращивание монокристаллов и методика эксперимента

Монокристаллы PBSN-4 и PBSN-6 были выращены методом массовой кристаллизации. Методика выращивания, а также рентгеновские и диэлектрические исследования этих кристаллов описаны в работах [10,11]. Кристаллы в виде пластин толщиной 0.3-0.8 mm с гранями типа [100] были прозрачными и имели слегка желтоватую окраску. Все измерения проводились на образцах, не подвергавшихся механической обработке. Постоянное электрическое поле прикладывалось в направлении [100], свет распространялся в направлении [001]. Использовались разные режимы приложения электрического поля: нагрев в поле после охлаждения в поле (FHaFC) и нагрев в поле после охлаждения в отсутствие поля (FHaZFC). После каждого приложения поля образцы перед каждым новым измерением прогревались при температуре 500°С в течение часа. Чтобы получить воспроизводимые результаты и исключить эффект диэлектрического старения, который наблюдался в кристаллах PBSN-6 [11], диэлектрические и оптические измерения проводились непосредственно после отжига образцов. Исследовались оптическое пропускание и МРС, измеренное в геометрии пропускания [17]. Для оптических измерений использовался Не-Ne-лазер. Диэлектрические измерения проводились на частоте 1 kHz. Скорость изменения температуры образца варьировалась от 1.5 до 4.5°С/min.

2. Экспериментальные результаты и обсуждение

На рис. 1 представлены температурные зависимости диэлектрической проницаемости и оптического пропускания, полученные в режиме нагревания и охлаждения

Рис. 1. Температурные зависимости диэлектрической проницаемости (1, 1') и оптического пропускания (2, 2'), полученные в режиме нагревания (1, 2) и охлаждения (1', 2') для монокристалла PBSN-4.

для монокристаллов PBSN-4 в отсутствие электрического поля. При нагревании образца при температуре $\sim 52^{\circ}\mathrm{C}$ четко виден минимум на кривой 2 оптического пропускания, в то время как на кривой 1 при этой температуре наблюдается только быстрое возрастание (скачок) ε . Эта температура (T_s) соответствует температуре спонтанного фазового перехода из макродоменного в релаксорное состояние [11]. Как следует из работы [11], в кристаллах PBSN-4 наблюдались частотная дисперсия є и увеличение температуры максимума є с ростом частоты измерительного поля. В отличие от $T_{\varepsilon_{\max}}$ температурное положение скачка ε практически не зависит от частоты. Нерелаксационный характер спонтанного перехода подтверждается и нашими оптическими и диэлектрическими измерениями, а именно совпадением температур минимального пропускания (T_s) на нулевой частоте поля и быстрым возрастанием ε при T_s на частоте 1 kHz. Минимум в оптическом пропускании (или максимум МРС) свидетельствует об образовании крупномасштабной неоднородной структуры при этой температуре и о реализации спонтанного фазового перехода перколяционного типа. Температурный гистерезис ~ 13°С, наблюдаемый при оптических и диэлектрических измерениях (рис. 1), является одной из основных черт фазового перехода первого рода. Температура спонтанного перехода на $\sim 20^{\circ}$ С ниже температуры максимума ε , что свидетельствует о достаточно широком температур-

Рис. 2. Температурные зависимости оптического пропускания (1, 3) и диэлектрической проницаемости (2) (f = 1 kHz) для монокристалла PBSN-6, измеренные в разных электрических полях. $E_{=}$, kV/cm: 1, 2 - 0, 3 - 0.45.

Рис. 3. Температурные зависимости оптического пропускания (1) и малоуглового рассеяния света (2,3), измеренные в электрическом поле 3.5 kV/cm, для кристалла PBSN-6 при разных режимах приложения поля. 1, 2 — FHaZFC, 3 — FHaFC. Угол рассеяния 30'.

ном интервале существования релаксорного состояния в этом кристалле. Температурные зависимости оптического пропускания для кристаллов PBSN-4 и PSN [5] совпадают.

Совсем другая картина наблюдается в кристалле PBSN-6 (рис. 2). В отсутствие электрического поля оптическое пропускание достаточно плавно растет с повышением температуры, не обнаруживая резких скачков и четко выраженных максимумов (кривая 1), что характерно для чисто релаксорных соединений. Слабовыраженные максимумы при 28 и 45°C, скорее всего, связаны с неоднородностью исследуемых образцов. На температурной зависимости ε , кроме четко выраженного максимума, не видно других существенных аномалий (кривая 2).

Картина оптического пропускания в кристалле PBSN-6 меняется в электрических полях. При приложении электрического поля $E < E \approx 0.3 \,\text{kV/cm}$ в режиме FHaZFC никаких изменений по сравнению с пропусканием, измеренным в нулевом поле, не происходит. Напряженности электрического поля $E \sim 0.4 \,\text{kV/cm}$ уже достаточно для изменения вида температурной зависимости оптического пропускания (кривая 3): наблюдается скачкообразное увеличение интенсивности, а при температуре $\sim 27^{\circ}$ C появляется минимум. Картина оптического пропускания в электрическом поле для кристалла PBSN-6 становится похожей на картину опти-

ческого пропускания для кристалла PBSN-4 в отсутствие электрического поля (кривая 2 на рис. 1). Наблюдаемый минимум свидетельствует об индуцировании крупномасштабной структуры и сегнетоэлектрического состояния в электрическом поле, превышающем некоторое пороговое значение. Температура наблюдаемой аномалии совпадает с температурой деполяризации T_d , определенной из диэлектрических измерений в работе [11], и соответствует разрушению сегнетоэлектрической фазы, индуцированной в электрическом поле.

Более четко аномалии на температурных зависимостях оптического пропускания и МРС проявляются при приложении больших электрических полей. На рис. 3 представлены температурные зависимости оптического пропускания и MPC (I_{θ}) , измеренные в электрическом поле 3.5 kV/cm, для кристалла PBSN-6 при разных режимах приложения поля: FHaZFC и FHaFC. Из рис. 3 видно, что при некоторой температуре, соответствующей температуре разрушения (T_d) индуцированного при охлаждении сегнетоэлектрического состояния, на температурной зависимости МРС наблюдается узкий пик, свидетельствующий о перколяционной природе этого перехода (кривая 3). Эта температура при одном и том же электрическом поле совпадает с температурой разрушения сегнетоэлектрического состояния в режиме FHaZFC. Заметим, что из наших экспериментов по оптическому пропусканию с фиксированной скоростью

Рис. 4. Зависимость температуры спонтанного фазового перехода (T_s) для кристалла PBSN-4 (1) и температуры разрушения индуцированного сегнетоэлектрического состояния (T_d) для кристалла PBSN-6 (2) от величины электрического поля.

нагрева образца температуру индуцирования сегнетоэлектрического состояния в режиме FHaZFC определить не удалось. Это связано, вероятно, с тем, что процесс индуцирования сегнетоэлектрического состояния, как следует из работы [12], представляет собой кинетический фазовый переход и требует достаточно длительного времени для установления равновесного состояния.

В полях выше 2 kV/ст температура деполяризации T_d линейно повышается с полем (кривая 2 на рис. 4) для кристалла PBSN-6. Температура T_d определялась из положения максимума на температурной зависимости интенсивности МРС, измеренной в разных электрических полях. Интересно заметить, что в области полей $0.4 < E < 2 \, \mathrm{kV/cm} \, T_d$ практически не обнаруживала зависимости от величины электрического поля. Это, скорее всего, связано с неоднородностью исследуемых образцов. Наличие пика на температурной зависимости МРС при температуре разрушения индуцированной полем сегнетоэлектрической фазы, а также линейная зависимость указанной температуры от величины электрического поля в полях выше 2 kV/ст свидетельствуют о том, что этот переход имеет перколяционную природу и является переходом первого рода. О подобном "слабом" переходе первого рода при разрушении индуцированной сегнетоэлектрической фазы упоминалось в работе [18] для керамики PLZT 9/65/35. Заметим, что для классических релаксоров PMN и PZN фазовый переход из индуцированной сегнетоэлектрической фазы в эргодическую релаксорную не проходит по перколяционному типу [15].

Одной из возможных причин наблюдаемого различия в природе фазового перехода разрушения индуци-

рованной сегнетоэлектрической фазы в монокристаллах PBSN-6 и классического релаксора PMN является то, что монокристаллы PBSN-6 находятся на границе устойчивости между нормальными сегнетоэлектриками и релаксорами. При увеличении концентрации Ва в составах PBSN и повышении устойчивости релаксорного состояния фазовый переход разрушения индуцированной сегнетоэлектрической фазы будет, по-видимому, проходить так же, как и в PMN. Для подтверждения этого предположения необходимы дальнейшие исследования. Линейная зависимость температуры спонтанного фазового перехода от величины электрического поля в исследуемом интервале полей наблюдалась нами и в кристаллах PBSN-4 (кривая *1* на рис. 4), что совпадает с аналогичной зависимостью для чистого PSN [5].

Список литературы

- [1] N. Setter, L.E. Cross. J. Appl. Phys. 51, 8, 4356 (1980).
- [2] В.Г. Смотраков, И.П. Раевский, М.А. Малицкая, С.М. Зайцев, Ю.М. Попов, Н.А. Стрекнева. Изв. АН СССР. Неорган. материалы 19, 1, 123 (1983).
- [3] F. Chu, I.M. Reaney, N. Setter. J. Appl. Phys. 77, 4, 1671 (1995).
- [4] L.S. Kamzinā, A.L. Korzhenevskii. Ferroelectrics 131, 91 (1992).
- [5] Л.С. Камзина, Н.Н. Крайник. ФТТ 42, 9, 1664 (2000).
- [6] F. Chu, I.M. Reaney, N. Setter. Ferroelectrics 151, 1–4, 343 (1994).
- [7] М.Я. Дамбекалне, К.Я. Борман, А.Р. Штернберг, Е. Гердес, И.В. Бранте. Изв. РАН. Сер. физ. 57, *3*, 78 (1993).
- [8] C. Malibert, B. Dkhil, J.M. Kiat, D. Durand, J.F. Berar, A. Spasojevic-de Bire. J. Phys. Cond. Matter 9, 7485 (1997).
- [9] И.П. Пронин, Т. Аязбаев, Н.В. Зайцева, Т.А. Шаплыгина, В.А. Исупов. Неорган. материалы **32**, *12*, 1528 (1996).
- [10] I.P. Raevskii, V.G. Smotrakov, V.V. Eremkin, E.S. Gagarina, M.A. Malitskaya. Ferroelectrics 247, 1–3, 27 (2000).
- [11] И.П. Раевский, В.В. Еремкин, В.Г. Смотраков, Е.С. Гагарина, М.А. Малицкая. ФТТ **42**, *1*, 154 (2000).
- [12] I.P. Raevskii, M.A. Malitskaya, E.S. Gagarina, V.G. Smotrakov, V.V. Eremkin. Ferroelectrics, in press.
- [13] Л.С. Камзина, А.Л. Корженевский. ФТТ 34, 6, 1795 (1992); Л.С. Камзина, А.Л. Корженевский, Н.Н. Крайник, Л.М. Сапожникова. Изв. АН СССР. Сер. физ. 54, 4, 614 (1990).
- [14] Л.С. Камзина, А.Л. Корженевский. Письма в ЖЭТФ 50, 3, 146 (1989).
- [15] L.S. Kamzina, N.N. Krainik. Ferroelectrics 223, 27 (1999).
- [16] А.Л. Корженевский. ФТТ 29, 9, 2754 (1987).
- [17] Л.С. Камзина. А.Л. Корженевский, О.Ю. Коршунов. ФТТ 36, 2, 479 (1994).
- [18] V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik. Phys. Rev. B60, 9, 6420 (1999).