Особенности изотропных и анизотропных обменных взаимодействий в орбитально-вырожденном возбужденном состоянии (${}^{4}A_{2} \times {}^{2}T_{2}$) пар ионов Cr³⁺ с D_{3h} -симметрией

© В.В. Банников, В.Я. Митрофанов

Институт металлургии Уральского отделения Российской академии наук, 620016 Екатеринбург, Россия

E-mail: luda@imet.sco.ru

Дана теоретическая интерпретация экспериментально наблюдаемых оптических спектров поглощения изолированных пар ионов хрома в Cs₃Cr₂Br₉, соответствующих переходам из основного состояния пары $({}^{4}A_{2} \times {}^{2}A_{2})$ в однократно возбужденное $({}^{4}A_{2} \times {}^{2}T_{2})$. Показано, что положение обменных мультиплетов в возбужденном состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ определяется преимущественно резонансными обменными взаимодействиями, снимающими вырождение по обмену возбуждением в паре. Установлено, что наблюдаемая тонкая структура пары в состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ обусловлена суперпозицией вкладов от одно- и двухцентрового спин-орбитального взаимодействия и резонансного антисимметричного обмена.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 00-03-32335).

1. Кристалл Cs₃Cr₂Br₉ (группа симметрии D_{6h}^4) представляет собой концентрированную двухъядерную систему, в которой димеры иона хрома имеют высокую локальную симметрию (D_{3h}) [1]. Изучение поляризованных спектров поглощения в широком диапазоне температур и магнитных полей, предпринятое в работе [2], позволило обнаружить большое число узких линий в области 18 500-19 000 cm⁻¹. Все наблюдаемые линии были идентифицированы и приписаны разрешенным бесфононным электрически дипольным переходам из основного состояния пары $({}^{4}A_{2} \times {}^{2}A_{2})$ в однократно возбужденное (${}^{4}A_{2} \times {}^{2}T_{2}$). При этом в работе [2] фактически были приведены список длин волн идентифицированных линий и полученная из обработки экспериментальных данных схема энергетических уровней пары в состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ (табл. 1).

Настоящая работа посвящена исследованию специфики обменных взаимодействий в возбужденном состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ пар ионов Cr³⁺ в Cs₃Cr₂Br₉. В рамках метода эффективного гамильтониана (ЭФГ) рассчитаны положения и тонкая структура спектра обменных мультиплетов в состоянии (${}^{4}A_{2} \times {}^{2}T_{2}$). Из сравнения теоретически рассчитанной и экспериментально найденной схемы уровней определены значения соответствующих параметров ЭФГ. Найдены микроскопические механизмы, ответственные за формирование энергетического спектра пары в возбужденном состоянии (${}^{4}A_{2} \times {}^{2}T_{2}$).

2. Основное состояние пары ионов Cr^{3+} (${}^{4}A_{2} \times {}^{2}A_{2}$) адекватно описывается гамильтонианом Гейзенберга– Дирака–Ван-Флека (ГДВФ)

$$H = J_0(S_a S_b) + j(S_a S_b)^2,$$
 (1)

где индексы *a* и *b* относятся к ионам, а *J* и *j* — обменные параметры, которые, согласно [2], равны $J_0 = 4.9 \pm 0.3 \text{ cm}^{-1}$ и $j = -0.21 \pm 0.06 \text{ cm}^{-1}$.

Теоретико-групповой подход позволяет определить разрешенные термы пары по состояниям отдельных ионов и, следовательно, существенно упростить расчет тонкой структуры спектра в состоянии $({}^{2}A_{2} \times {}^{2}T_{2})$, кратность вырождения которого равна 48. В данном случае набор разрешенных мультиплетов пары равен [3]

$${}^{4}A_{2} \times {}^{2}T_{2} \rightarrow {}^{3}A_{2}' + {}^{3}A_{1}'' + {}^{3}E' + {}^{3}E'' + {}^{5}A_{2}'' + {}^{5}A_{2}'' + {}^{5}E' + {}^{5}E'', \quad (2)$$

где $\Gamma = A'_2, A''_1, E', E''$ отвечает неприводимым представлениям группы D_{3h} . Учет спин-орбитальных и спинспиновых взаимодействий обусловливает дальнейшие расщепления обменных мультиплетов в (2) (табл. 1). Важным моментом при построении волновых функций разрешенных термов пары и ЭФГ, описывающего однои двухцентровые взаимодействия, является выбор локальных систем координат, связанных с отдельными ионами, и парной системы координат, необходимой при записи спин-зависимых парных взаимодействий. Указанные системы координат были определены так же, как и для пары первого порядка ионов Cr^{3+} в рубине [4].

3. Структура энергетического спектра пары в состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ зависит от соотношений между энергиями одноцентровых (спин–орбита, тригональное поле) и парных обменных взаимодействий. В рассматриваемом случае спин-орбитальное взаимодействие и тригональное поле в ${}^{2}T_{2}(t_{2}^{3})$ -состоянии не проявляются в первом порядке теории возмущения. Поэтому положение различных мультиплетов ${}^{2S+1}\Gamma$ должно определяться преимущественно за счет обменных взаимодействий. В рамках метода ЭФГ [3] соответствующий гамильтониан может быть представ-

Терм	Тонкая структура	Энергии уровней, cm ⁻¹		Тонкая структура спектра	
		Теория	Эксперимент [2]	(по методу Э Φ Г)	
${}^{3}A'_{2}$	$egin{array}{c} A_1'(0) \ E''(\pm 1) \end{array}$	18 661 18 661	18 661	$\frac{K_0 - 4D}{K_0 + 2D}$	
${}^{3}A_{1}^{\prime\prime}$	$A_2''(0) \ E'(\pm 1)$	18 730 18 730	18 730	$\begin{array}{c} K_0 - 4D \\ K_0 + 2D \end{array}$	
³ <i>E</i> ′	$E''(\pm 1) \\ E'(0) \\ A''_1 + A''_2(\pm 1)$	18 696 18 699 18 701	18 696 18 699 18 701	$egin{array}{l} K_0+\lambda+2D\ K_0-4D\ K_0+\lambda+2D{\pm}2\sqrt{6} B \end{array}$	
³ <i>E</i> ′′	$E'(\pm 1) \ E''(0) \ A'_1 + A'_2(\pm 1)$	18 768 18 787 18 802		$egin{array}{l} K_0+\lambda+2D\ K_0-4D\ K_0+\lambda+2D\pm 2\sqrt{6} B \end{array}$	
${}^{5}A'_{2}$	$egin{array}{c} A_2'(0) \ E'(\pm 2) \ E''(\pm 1) \end{array}$	18 786 18 786 18 786	18 786 18 786	$K_0 - 12D \ K_0 + 12D \ K_0 - 6D$	
${}^{5}A_{2}^{\prime\prime}$	$E'(\pm 1) \\ E''(\pm 2) \\ A''_1(0)$	18 608 18 608 18 608	18 608 18 608	$K_0 - 6D \ K_0 + 12D \ K_0 - 12D$	
⁵ E''	$\begin{array}{c} A_1'' + A_2''(\pm 2) \\ E'(\pm 1) \\ E''(0) \\ E''(\pm 2) \\ A_1' + A_2'(\pm 1) \end{array}$	18 653 18 643 18 635 18 621 18 627	18 645 18 631 18 620 18 630	$ \begin{array}{c} K_{0}+2\lambda+12D \\ K_{0}+\lambda-6D \\ K_{0}-\lambda+\left((12D-\lambda)^{2}+144B^{2}\right)^{1/2} \\ K_{0}-\lambda-\left((12D-\lambda)^{2}+144B^{2}\right)^{1/2} \\ K_{0}-\lambda-6D\pm 6\sqrt{6} B \end{array} $	
⁵ E'	$A'_{1} + A'_{2}(\pm 2)$ $E''(\pm 1)$ E'(0) $E'(\pm 2)$ $A''_{1} + A''_{2}(\pm 1)$	18 878 18 892 18 901 18 904 18 905	18 892 18 901 18 904 18 905	$ \begin{array}{c} K_{0} + 2\lambda + 12D \\ K_{0} + \lambda - 6D \\ K_{0} - \lambda - \left((12D - \lambda)^{2} + 144B^{2} \right)^{1/2} \\ K_{0} - \lambda + \left((12D - \lambda)^{2} + 144B^{2} \right)^{1/2} \\ K_{0} - \lambda - 6D + 6\sqrt{6} B \end{array} $	

Таблица 1. Значения энергий уровней тонкой структуры спектра в возбужденном состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ пары ионов хрома в Cs₃Cr₂Br₉

лен в виде

$$H = H_d + H_r,$$

$$H_{d} = K_{1} [X_{0a}(T_{1}) + X_{0b}(T_{2})]$$

+ $J_{2}(S_{a}S_{b}) + J_{2} [X_{0a}(T_{2}) + X_{0b}(B_{2})](S_{a}S_{b}),$
 $H_{r} = R_{0}\tau_{0a}(T_{1})\tau_{0b}(T_{1})(Q_{a}Q_{b})$
+ $R_{1} \{\tau_{+a}(T_{1})\tau_{-b}(T_{1}) + \tau_{-a}(T_{1})\tau_{+b}(T_{1})\}(Q_{a}Q_{b}),$ (3)

где гамильтониан H_d описывает взаимодействие в состоянии, когда возбуждение локализовано на одном из ионов пары, а оператор H_r — обменные взаимодействия, которые снимают вырождение по обмену возбуждения в паре. Слагаемое с K_1 возникает во втором порядке теории возмущений по тригональному полю и спин-независимому обменному взаимодействию, слагаемое с J_2 описывает орбитальную модификацию гамильтониана (ГДВФ). Матрицы орбитальных τ_{μ} , $X_{\mu}(T_2)$ и спинового Q операторов определены в [3]. Выражение для энергий уровней обменных мультиплетов в состоянии $({}^{4}A_{2} \times {}^{2}T_{2})$ имеет вид

$$E(^{2S+1}\Gamma) = T_0 - K_1 + (J_1 + \eta J_2)\varphi(S) \pm R_i \nu(S), \quad (4)$$

где $\varphi(S) = [S(S+1)-9/2]/2$, $\nu(S) = S(S+1)/3$; $\mu = -1$, $R_i = R_1$ для $\Gamma = E'$, E''; $\mu = 2$, $R_i = R_0$ для $\Gamma = A'_2$, A''_1 .

ЭФГ, описывающий тонкую структуру спектра обменных мультиплетов, может быть представлен в следующем виде:

$$H_{s} = H_{ds} + H_{rs},$$

$$H_{ds} = \lambda_{0} [X_{0a}(T_{1})S_{0a} + X_{0b}(T_{1})S_{0b}]$$

$$+ \lambda_{1} [X_{0a}(T_{1})S_{0b} + X_{0b}(T_{1})S_{0a}]$$

$$+ (D + D_{e} [X_{0a}(T_{2}) + X_{0b}(T_{2})]) [S_{a}S_{b}]_{0}^{(2)},$$

$$H_{rs} = D_{1} \{\tau_{+a}(T_{1})\tau_{-b}(T_{1}) - \tau_{-a}(T_{1})\tau_{+b}(T_{1})\} [Q_{a}Q_{b}]_{0}^{(1)}$$

$$+ D_{2}\tau_{0a}(T_{1})\tau_{0b}(T_{1}) [Q_{a}Q_{b}]_{0}^{(2)}$$

$$+ D_{3} \{\tau_{+a}(T_{1})\tau_{-b}(T_{1}) + \tau_{-a}(T_{1})\tau_{+b}(T_{1})\} [Q_{a}Q_{b}]_{0}^{(2)}, (5)$$

где гамильтониан H_s наряду с традиционными слагаемыми включает ряд новых: типа спин-чужая орбита

Таблица 2. Значения параметров ЭФГ (6) для различных термов состояния $({}^{4}A_{2} \times {}^{2}T_{2})$

K_0, cm^{-1}	λ , cm ⁻¹	D, cm^{-1}	B, cm^{-1}
18670			
18730			
18786			
18 608	160	0.27	0
18 /86	-16.8	-0.27	
18 698	-2.5	-0.08	B < 0.81
18 8 9 6	7.9 -6.5	-0.08	D < 0.27 R < 0.27
	$\frac{K_0, \text{ cm}^{-1}}{18670}$ 18 670 18 730 18 786 18 608 18 786 18 698 18 698 18 636 18 896	$\begin{array}{c c c} K_0, {\rm cm}^{-1} & \lambda, {\rm cm}^{-1} \\ \hline 18670 & & \\ 18730 & & \\ 18786 & & \\ 18608 & & \\ 18786 & -16.8 & \\ 18698 & -2.5 & \\ 18636 & 7.9 & \\ 18896 & -6.5 & \\ \end{array}$	K_0, cm^{-1} λ, cm^{-1} D, cm^{-1} 18 670

 (λ_1) и резонансное антисимметричное обменное взаимодействие (D_1) . Расчет тонкой структуры спектра обменных мультиплетов желательно выполнить вначале с использованием ЭФГ в представлении полного спина пары [3]

$$H_{\text{eff}}(^{2S+1}\Gamma_1) = K_0 + D_0 S_0^{(2)},$$

$$H_{\text{eff}}(^{2S+1}\Gamma_2) = K_0 + \lambda X(A_2) S_0^{(1)} + D_0 S_0^{(2)} + B \left[X_-(E) S_{-2}^{(2)} - X_+(E) S_{+2}^{(2)} \right], \quad (6)$$

где $\Gamma_1 = A'_2, A''_1; \Gamma_2 = E', E''$. Константы в ЭФГ (6), относящиеся к разным термам, не обязательно должны совпадать. В частности, для параметров λ имеем

$$\begin{split} \lambda({}^{3}E'') &= -\frac{1}{4\sqrt{2}}D_{1} - \frac{(\lambda_{0} + 5\lambda)}{4\sqrt{3}}, \\ \lambda({}^{3}E') &= +\frac{1}{4\sqrt{2}}D_{1} - \frac{(\lambda_{0} + 5\lambda)}{4\sqrt{3}}, \\ \lambda({}^{5}E'') &= +\frac{1}{4\sqrt{2}}D_{1} + \frac{(\lambda_{0} + 3\lambda)}{4\sqrt{5}}, \\ \lambda({}^{5}E') &= -\frac{1}{4\sqrt{2}}D_{1} + \frac{(\lambda_{0} + 3\lambda)}{4\sqrt{5}}. \end{split}$$

Согласие теоретически рассчитанной схемы уровней и экспериментально найденной в работе [2] достигается для следующих значений констант в (3):

$$|R_0| = 44.5 \,\mathrm{cm}^{-1}, \quad |R_1| = 65 \,\mathrm{cm}^{-1},$$

 $J_1 = 7.67 \,\mathrm{cm}^{-1}, \quad J_2 = -4.66 \,\mathrm{cm}^{-1}, \quad K_1 = -19.5 \,\mathrm{cm}^{-1}.$

Значения констант в ЭФГ (6), описывающих тонкую структуру спектра в состоянии (${}^{4}A_{2} \times {}^{2}T_{2}$), приведены в табл. 2.

Видно, что параметры изотропного обмена в основном и возбужденном состояниях имеют один и тот же знак и сравнимы по величине. При этом основной вклад в формирование энергетического спектра пары вносит резонансное обменное взаимодействие. Относительно большая величина константы K_1 объясняется вкладом второго порядка теории возмущения по тригональному полю ($V_{\rm tr}$): $K_1 \sim -V_{\rm tr}^2/\Delta$, где $\Delta \sim 500 \,{\rm cm}^{-1}$ — расстояние до близлежащего возбужденного состояния (${}^4A_2 \times {}^2A_1$).

Тонкая структура спектра пары обусловлена в основном спин-орбитальными взаимодействиями и резонансным антисимметричным обменом: $\lambda_0 = 28.9 \text{ cm}^{-1}$, $\lambda = -7.6 \text{ cm}^{-1}$, $D_1 = 40.5 \text{ cm}^{-1}$. Относительно большая величина констант в ЭФГ (6) и выражении (7), возможно, связана с погрешностью в измерении положений спектральных линий.

Список литературы

- A. Ferrigato, K.J. Maxwell, J.R. Owers-Bradley. J. Phys. Chem. Sol. 51, 157 (1990).
- [2] K.J. Maxwell, R.J. Turner. J. Phys. Chem. Sol. 52, 691 (1991).
- [3] В.Я. Митрофанов, А.Е. Никифоров, В.И. Черепанов. Спектроскопия обменно-связанных комплексов в ионных кристаллах. Наука, М. (1985).
- [4] M. Naito. J. Phys. Soc. Jap. 34, 1491 (1973).