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Anharmonic T ⊗ ε Jahn-Teller coupling in LiCaAlF6 : Cr3+
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For an octahedral system, we analyzed the coupling between triple degenerate electronic states of a transition
metal ion and the double degenerate vibration of the ligands of the host matrix. The vibrations of the ligands
of the lattice are described by new anharmonic coherent states of the Morse potential. For the linear coupling
between electronic states and anharmonic vibrations, we built the matrix elements of the interaction Hamiltonian
and corresponding energy levels.
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In the last twenty years, considerable attention has been
paid to the linear octahedral Jahn-Teller system T⊗(ε+τ2),
in which an electronic state T of the transition metal ion
is equally coupled to the vibrational modes of the ligands
ε and τ2 of the ligands, each of which corresponds to a
common angular frequency [1–5].
The strong coupling limit has been explored by means

of the Glauber state by Judd [6], and Judd and Vogel [7].
The studies of the Jahn-Teller effect using coherent states
as well as some applications to particular systems are well
known [8–11].
In all cases, the coupling of double and triple degenerate

electronic states with harmonic vibrations described by
harmonic coherent states was considered. For the laser
crystals doped with transitional metal ions, the vibronic
interactions are higher than another types of interactions
and explain the experimental data concerning vibronic
transitions. This is the case of LiCaAlF6 : Cr3+.
In the cluster model [12], for the Cr3+ ion incorporated in

LiCaAlF6 in an octahedral site, the interaction of the triple
degenerate electronic state 4T2 of d3 configuration of the
chromium ion with the τ2g (three-dimensional) vibrations
of the ligands of the ligands was neglected since the εg

(two-dimensional) mode of the octahedron of the ligands
interacts more strongly with the same electronic states of
the ion.
This is true because the εg mode of an octahedron which

involves the radial motion of the ligand ions can couple to σ -
bonding orbitals and should therefore couple more strongly
than the τ2g modes high only involves the tangential motion
and couple only to π-orbitals. Thus, here is present the
vibronic T ⊗ ε interaction.
In this paper, we studied the general case of an octahedral

Jahn-Teller system of the T⊗ε type having triple degenerate
electronic states coupled with the double degenerate anhar-
monic vibrational states, the latter described by the Morse
potential.
For the Morse oscillator [13,14], there are different

types of coherent states [15]. We used these states in
order to extend the analytical treatment of the Jahn-Teller
effect of the E ⊗ ε interaction in Jahn-Teller octahedral

symmetries [16] presented in our old paper to the case of
the T ⊗ ε coupling for the same symmetry.

1. Hamiltonian of the system

The Hamiltonian of the octahedral Jahn-Teller T ⊗ ε

system is
H = He + Hv + HJT, (1)

where He represent the Hamiltonian of the electronic part
of the system, Hv is the Hamiltonian of a double Morse
oscillator, and HJT is the Hamiltonian of the Jahn-Teller
interaction between the triple degenerate electronic state T
of the metal ion and the double degenerate vibrations of the
ligands of a laser crystal.
The electronic Hamiltonian of the system is well known.

We denote with |θ〉 and |ε〉 the uncoupled electronic wave-
functions which transform according to two-dimensional
irreducible representation of the octahedral group. In order
to obtain an analytic expression for the quantities of interest,
such as the energy of the levels of the Ham factors, it is
necessary to use the wave functions of the Hamiltonian
He + Hv from Eq. (1). Such wavefunctions are products
between the electronic wave functions |θ〉, |ε〉 and the wave
functions which describe the vibrations of ligands.
For the vibrations of ligands, we suppose that the

vibration Hamiltonian Hv is described by

Hv = Hv1 + Hv2 =
2∑

k=1

[
p2k
2m

+ V0(e−2αxk − e−αxk)
]
, (2)

where α > 0 is the anharmonicity constant of the oscillator,
m is the mass of the oscillator, pk is the momentum
operator of the k oscillator, xk is the displacement from the
equilibrium position of the k oscillator, and V0 is a positive
constant.
We use the notation ν

ν =

√
8mV0
α2~2

(3)

and introduce the variables yk

yk = ν exp(−αxk), k = 1, 2. (4)
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The energy levels of the single Morse oscillator described
by Hvk are

E0(nk) = −~�

(
nk − ν − 1

2

)2

, (5)

where k = 1, 2; ~� = V0/ν
2; ni = 0, 1, 2, . . . ,N =

[
ν−1
2

]
,

with [µ] representing the entire part of µ.
The eigenfunctions of the Hamiltonian H0k (where

k = 1, 2) are

ψnk(yk) = ckysi e−yk/2F(−nk, 2sk + 1, yk), (6)

where 2sk + 1 = ν − 2nk, ck = 1
0(ν−2nk)

√
0(ν−nk)

nk !
is a

normalization constant, and F represents the confluent
hypergeometric function.
The vibrational states of the two-dimensional Morse

oscillator are

|n1n2〉 = ψn1(y1)ψn2(y2). (7)

These states have the orthonormalization properties as
follows

〈n1n2|n′1n′2〉 = δn1n′1
δn2n′2

. (8)

In the linear approximation, the Jahn-Teller Hamiltonian
of interaction HJT has the form

HJT = ~~�(µ+µ)(E)(x1 + x2), (9)

where ~ is the strength of the Jahn-Teller coupling µ+

and µ represents the creation and annihilation operators
of the triple degenerate electronic states of the vibronic
system. The label (E) indicate that the operators acts on
the electronic states of the system.

2. The algebra of the anharmonic
oscillator

In our previous papers [15], we have established the
creation operator B+, the annihilation operator B−, and
the operator B0 for the one-dimensional Morse oscillator.
The relults of [15] will be extended to the two-dimensional
isotropic Morse oscillator by introducing the creation
operators B+k, the annihilatons operators B−k, and the
operators B0k (k = 1, 2), which have the analytical
expressions

B±k = (2sk ∓ 1)
∂

∂yk
± sk(2sk ∓ 1)

yk
∓ ν

2
, (10)

B0k = −yk
∂2

∂y2
k

− ∂

∂yk
+

s2k
yk

+
yk

2
− sk +

ν

2
− 1. (11)

The operators obey the commutation relations

[B+k, B−l ] = 2B0kδkl, [B±k, B0l ] = ±B±kδkl, (12)

where k, l = 1, 2.

Instead of the operators (10) and (11), which are sk

dependent, we introduce new operators independent on sk .
For this reason, the dynamic system can be expressed with
the aid of auxiliary variables ξk ∈ [0, 2π] (where k = 1, 2)
of the extra-phase type. According to this method, the new
operators are

a±k = e∓i ξk

{[
2
i

∂

∂ξk
∓ 1

]
∂

∂yk

± 1
yk

[
1
i

∂

∂ξk

(
2
i

∂

∂ξk
∓ 1

)]
∓ ν

2

}
, (13)

a0k =
1
i

∂

∂ξk
. (14)

The commutators of the operators a0k and a±k are

[a+k, a−l ] = 2a0kδkl, [a±k, a0l ] = ±a±kδkl, (15)

and
[a0k, e±i ξl ] = ±e±i ξkδkl, (16)

where k, l = 1, 2.
The new eigenfunctions of the Hamiltonian Hv i will be

8nk(yk, ξk) = eiskξkψnk(yk), (17)

instead of ψni (yi ) given by (6).
The action of the operators a±k, a0k on the eigenstates

8nk is

a+l8nk(yk, ξk) =
√

(nk + 1)(ν − nk − 1)8nk+1(yk, ξk)δkl,

a−l8nk(yk, ξk) = −
√

nk(ν − nk)8nk−1(yk, ξk)δkl,

a0l8nk(yk, ξk) = sk8nk(yk, ξk)δkl, (18)

where k, l = 1, 2.
The Hamiltonian Hv can be expressed in terms of the

operators a01 and a02

Hv = −~�(a2
01 + a2

02). (19)

3. The Jahn-Teller interaction

In order to express the Jahn-Teller interaction
Hamiltonian HJT in terms of the dynamic group operators
{a±1, a±2, a01, a02}, we start with the relations [16]

∂

∂yk
= −1

2

∞∑
n=0

(2a0k)n

×
[
ei ξka+k +

ν

2
− (−1)n

(
e−i ξka−k − ν

2

)]
, (20)

1
yk

= −
∞∑

n=0

(2a0k)n−1

×
[
ei ξka+k + (−1)ne−i ξka−k +

ν

2
[1− (−1)n]

]
. (21)
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The coordinate xk from the Hamiltonian (9) can be
written as

xk =
1
α

[ln ν − ln yk] =
ln ν
α

− 1
α

∞∑
n=1

1
n

(
1− 1

yk

)n

=
1
α

{
ln ν −

∞∑
n=1

1
n

[
1 + ν

∞∑
m=0

(2a0k)2m

+
∞∑

m=0

(2a0k)m−1(ei ξka+k + (−1)me−i ξka−k)
]n}

. (22)

The Hamiltonian HJT in terms of a±k and a0k operators
has the final form

HJT =
1
α
~~�(µ+µ)(E)

×
{
2 ln ν −

2∑
k=1

∞∑
n=0

1
n

[
1 + ν

∞∑
m=0

(2a0k)2m

−
∞∑

m=0

(2a0k)m−1[ei ξka+k + (−1)ne−i ξk ]
]n}

. (23)

4. The coherent states

For the Morse oscillator, different kinds of coherent
states [15,17] can be built. Form among the two types of
coherent states are useful to the study of the Jahn-Teller
interaction.
The first-type states are the displacement-operator

coherent states defined as the states obtained by action of
the displacement operator D on the vacuum state of the
one-dimentional Morse oscillator

|α〉 = D(α)|0〉 = exp[i (αa+ − α∗a−)]|0〉, (24)

where α ∈ C is the complex valued parameter.
We extended these states to the case of the Morse double-

oscillator as

|α〉 = D(α1)D(α2)|00〉
= exp[i (α1a+1 − α∗

1a−1)] exp[i (α2a+2 − α∗
2a−2)]|00〉,

where α1, α2 ∈ C and |n1n2〉 = |n1〉|n2〉.
Another type of coherent states are the annihilation

operator coherent states, designed by |λ〉 (where λ ∈ C).
These are the states which have the following property

a−|λ〉 = λ|λ〉. (25)

For the one-dimensional Morse oscillator, these states are

|λ〉 = c0

N∑
n=0

(−1)n(λa+)n

n!(ν − n)n
|0〉, (26)

where

c0 =
(∑ |λ|2n

n!(ν − n)n

)−1/2

is the normalization constant.

The states (25) also can be extended to the Morse double-
oscillator case. We denote these states |λ〉 = |λ1〉|λ2〉, where
λ1, λ2 ∈ C.

The general expression for these coherent states is

|λ〉 = |λ1〉|λ2〉

= c2
0

M∑
n,m=0

(−1)n(λ1a+1)n

n!(ν − n)n

(−1)m(λ2a+2)n

m!(ν − m)m
|00〉.

5. The generalized coherent states
and the Jahn-Teller interaction

In order to establish the states which corresponds to
non-vanishing average values of the HJT energy, Judd [6]
generalized the coherent states (24) introducing the
wavefunctions of the electron-phonon system with vibronic
interaction. For the case of an E⊗ ε system Judd defined its
coherent states as the overlap

|βnz〉 =

2π∫
0

dϕ|β〉eizϕei~b+(b+ − ~)n|00〉, (27)

where β refers to the lower branch (β = l) or to the upper
branch (β = u).
Thus,

|l〉 = cos
ϕ

2
|θ〉 − sin

ϕ

2
|ε〉, (28)

|u〉 = sin
ϕ

2
|θ〉 + cos

ϕ

2
|ε〉, (29)

and the creation operator b+ is defined by

b+ = aHO
+1 cosϕ + aHO

+2 sinϕ. (30)

The operators aHO
±k are the creation and annihilation

operators for the double harmonic oscillarot, ϕ is an
arbitrary angle, and the parameter z is (27) caracterized
the type of coupling. For example, z = 1/2 corresponds
to the states accesible be electric dipole radiation from the
zero-phonon ground state.
Thus, the generalized coherent states (27) correspond

to the case of Jahn-Teller interaction in the presence
of harmonic vibrations. In their papers, Judd [6] and
Chancey [8,9] studied the Jahn-Teller interaction for
the systems with different symmetries in harmonic
approximation.
Now we generalized the results of Judd and Chancey

for the case of Morse anharmonic vibrations, considering
instead of the creation and the annihilation operators for
harmonic oscillator, the corresponding operators for Morse
oscillator (13) and (14).
The first result was reported in [16], where we studied

the case of E ⊗ ε for anharmonic vibrations.
For the anharmonic vibrations in (30), instead of the

operators aHO
±k we use the corresponding operators a±k,
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introduced in (13), corresponding to the Mose oscillators.
Thus the operator b+ became

b+ = a+1 cosϕ + a+2 sinϕ, (31)

where the operators a±k are given in (13).
We note that the operators (30) and (31) act on a state

|n〉 of the double anharmonic oscillator defined by

|n〉 = |n1 + n2〉 = |n1〉|n2〉. (32)

We will define a new set of generalized anharmonic
coherent states as follows

|βnz〉 =

2π∫
0

dϕ|β〉eiϕz(b+ − ~)n|~〉, with ~ ∈ C, (33)

where |β〉 are the electronic states of the system, and can
be β = ( jmu), or β = ( jml), with j = 1 and m = 0,±1.
l refers to the lower branch and u to the upper branch of
the electronic states. As in (27), z represents a coupling
parameter.
In (33), |~〉 represents the annihilation operator coherent

states

|~〉 = c0

N∑
n=0

(−1)n(~b+)n

n!(ν − n)n
|0〉, (34)

where the state |0〉 represents the state |n〉 from (32) for
n = 0.
In the case z = 0, the states (33) correspond to the

uncoupled case

|βnz〉0 = |β〉(b − ~)n|~〉. (35)

We can expand the states |βnz〉 in terms of uncoupled
|βnz〉0 states as follows

|βnz〉 = c0

N∑
l=0

n∑
j=0

2π∫
0

dϕeiϕν |β〉,

C j
n

(−1)l+ j~l+ j (b+)n+l− j

j !(ν − j ) j
|0〉

= c0

N∑
l=0

n∑
j=0

C j
n

(−1)l+ j~l+ j

j !(ν − j ) j
|β, n + l − j , z〉0. (36)

The states (36) give the possibility to calculate the average
value of the Jahn-Teller interaction energy. We obtain

EJT = c2
0

N∑
l=0

n∑
j=0

N∑
l ′=0

n∑
j ′=0

C j
nC

j ′
n

(−1)l+ j~l+ j

j !(ν − j ) j

(−1)l ′+ j ′~l ′+ j ′

j !(ν − j ′) j ′

× 0〈β, n + l ′ − j ′, z|HJT|β, n + l − j , z〉0. (37)

The final form of Eq. (37) is

EJT =
1
α
~~�c2

0

N∑
l=0

n∑
j=0

|~|2( j+l)(C j
n)2

[ j !(ν − j ) j ]2
0〈β|(µ+µ)(E)|β〉

×
{
2 ln ν −

2∑
k=1

∞∑
p=0

1
p

[
1 + ν

∞∑
m=0

(sn+l− j )2m

]}
. (38)

Thus, we studied the vibronic coupling between triple
degenerate electronic states of the transition metal ion,
incorporated in a crystal laser, and double degenerate
vibration states of the ligands of crystal for the octahedral
symmetry.
We introduced a new type of coherent states by

generalizing annihilation operator coherent states in order
to describe the vibrations of ligands.
We used a new representation of the dynamic group of

the system by introducing an auxiliary variable ξk of extra-
phase type. In this representation, the eigenfunctions, the
observables, and the Hamiltonian of anharmonic vibration
were expressed. The eigenfunctions of the Hamiltonian of
the system, in the absence of interaction, are built using the
overlap of the electronic states and these new anharmonic
coherent states.
The results show that the anharmonic effects on Jahn-

Teller interaction can be expressed in a rigurous form which
contain the dependence on the anharmonicity of the system.
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214 (2000); Gh.E. Drǎgǎnescu, N.M. Avram. Z. Phys. Chem.
200S, 51 (1997).
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