Ab initio теория электронной структуры и спектров примесных *nl*-ионов

© Н.А. Кулагин

Харьковский национальный университет радиоэлектроники, 61045 Харьков, Украина

E-mail: kulagin@kture.kharkov.ua

Излагаются основные положения теории электронной структуры примесных кластеров и результаты численных расчетов для ионов групп железа, лантана и актиния в кластерах $Mn^{+n}:[L]_k$. Рассматривается изменение электронной структуры nl^{N-} и $nl^{N-1}n'l'$ -конфигураций 3*d*-, 4*f*- и 5*f*-ионов при варьировании межионного расстояния и лигандов в кластерах $Me^{+n}:[L]_k$, а также соответствие оптических и рентгеновских спектров различных примесных кристаллов.

Работа выполнена в рамках программы НИР ГБ 115-3.

Проблема изучения и расчета электронной структуры, интенсивности внутриоболочечных переходов $nl \leftrightarrow nl$, запрещенных в дипольном приближении, и других особенностей ионов с достраивающейся nl-оболочкой обычно решается при учете влияния ионов ближайшего окружения (лигандов) и воздействия возбужденных конфигураций противоположной четности [1–5]. Рассматривается как прямое влияние этих конфигураций (через оператор дипольного перехода), так и косвенное (через влияние кристаллического потенциала). Одним из приложений теории возбужденных конфигураций является исследование рентгеновских спектров [6,7].

Изменение электронной плотности иона при переходе из свободного состояния в твердое тело или кластер можно учесть в рамках X_{α} -метода [1–5], метода самосогласованного поля (ССП) для кластеров [6,7]. В то же время при расчетах электронной структуры твердых тел, в том числе интенсивности линий примесных ионов, часто используются функции свободного иона, рассчитанные в приближении Хартри–Фока [3,4,8].

Хорошо известно, что в твердых телах происходит значительное перераспределение электронной плотности не только внешних, но и внутренних электронов ионов групп железа, лантана и актиния, что приводит, в том числе, к смещению линий спектра рентгеновского характеристического излучения [7,9]. Однако, очевидно, что наибольшая трансформация происходит с волновыми функциями возбужденных конфигураций: $3d^{N-1}4p$ и $3d^{N-1}4S$ для 3d-ионов и $4f^{N-1}5p$ и $4f^{N-1}6s$ для редкоземельных ионов.

Анализ, проведенный в [10,11], свидетельствует о немонотонном характере изменения относительной энергии возбужденных конфигураций для ионов Me⁺ⁿ и RE⁺ⁿ [11–15]. Отметим, что исследование зависимости электронной структуры кластеров Me⁺ⁿ:[L]_k от межионного расстояния позволяет с высокой точностью определять изменение спектральных характеристик примесных кристаллов с давлением [16,17].

Продолжая начатые в [18] исследования электронной струтуры примесных кластеров, в данной работе мы рассмотрим изменение электростатических параметров

и энергии основных и возбужденных конфигураций, в том числе рентгеновских спектров, ионов Cr, Cu и частично Fe, Ni и Co, а также Nd, Eu, U и ряда других *nl*-ионов в кластерах $Me^{+n}:[O^{-2}]_k$, $Me^{+n}:[F^{-1}]$ и $Me^{+n}:[Cl^{-1}]_k$ при значениях k = 4, 5, 6 и межионных расстояниях R = 1.7-2.5 Å.

1. Метод ССП для кластеров

Метод ССП для кластеров является расширением метода Хартри–Фока–Паули [6,8,19] на кластеры и твердые тела [6,7,20,21] и во всех рассмотренных случаях дает корректные результаты.

На первом этапе мы рассматриваем электронную структуру Ме-иона в кластере $Me^{+n}:[L]_k$, состоящем из центрального Ме-иона с конфигурацией nl^N или $n'l^{N-1}n'l'$ в окружении k-ионов лигандов L на расстоянии R. Ионы лигандов (кислорода O^{-2} , фтора F^- или хлора Cl^-) имеют конфигурацию из полностью заполненных оболочек nl^{4l+2} . Симметрия кластера соответствует фрагменту изучаемого кристалла.

Энергию указанного кластера в одноэлектронном приближении на функциях центрального поля можно записать в виде [6,7]

$$E(\mathrm{Me}^{+n}:[L]_k) = E_0 + kE_1 + k'(E_z + E_c + E_{\mathrm{ex}}), \qquad (1)$$

где E_0 и E_1 — энергия центрального иона и лиганда в свободном состоянии соответственно, E_z — энергия взаимодействия электронов с "чужим" ядром, E_c , E_{ex} энергии кулоновского и обменного взаимодействий электронов центрального иона и лигандов, k' — коэффициент, учитывающий симметрию кластера (см. [7]).

Минимизация функционала (1) относительно радиальных частей (радиальных орбиталей) одноэлектронных волновых функций центрального иона или лигандов

позволяет получить систему уравнений

$$\left[\frac{d^2}{dr^2} + \frac{2}{r}Y'(nl|r) - \varepsilon_{nl} - \frac{l(l+1)}{r^2}\right]P(nl|r)$$
$$= X'(nl|r) + \sum_{n' \neq n} \varepsilon_{n'l}P(n'l|r), \quad (2)$$

определяющую радиальные орбитали центрального иона — P(nl|r) — и лигандов — $P(n'l'|r^*)$. Система уравнений (2) подобна системе Хартри-Фока [19], но ее решения зависят от волновых функций всех ионов кластера. Выражения для кулоновского и обменного потенциалов — Y'(nl|r) и X'(nl|r) — отличаются от стандартных следующими дополнительными потенциалами (самосогласованными потенциалами кластера):

$$\Delta Y(nl|r) = r/2 \sum_{k,k_1,n'l'} [a_{ll'}^{kk_1} Y_{kk_1}(n'l',n'l'|r) + b_{ll'}^{kk_1} Y_{kk_1}(nl,n'l'|r)],$$

$$\Delta X(nl|r) = -\sum_{k,k_1,n'l'} [\alpha_{ll'}^{kk_1} Y_{kk_1}(nl,n'l'|r) + \beta_{ll'}^k r^{k_1}] P(n'l'|r), \qquad (3)$$

а тензорная функция $Y_{kk_1}(nl, n'l'|r)$ определена в работах [11,12]. Коэффициенты $a_{ll'}^{kk_1}, b_{ll'}^{kk_1}, \alpha_{ll'}^{kk_1}, \beta_{ll'}^{k}$ приведены в [7] и для конфигураций заполненных оболочек имеют достаточно простой вид, ε_{nl} — одноэлектронная энергия. Система уравнений (2) может быть использована для единичного кластера с граничными условиями для свободного атома $P(nl|r) \rightarrow 0$ и $dP(nl|r)/dr \rightarrow 0$ при $r \rightarrow 0$. Для кристалла более корректными являются условия Вигнера–Зейтца $P(nl|r) \rightarrow 0$ и $dP(nl|r)/dr|_{r\rightarrow a} \rightarrow 0$, где a — радиус кластера.

При получении выражений для добавочных потенциалов Y(nl|r) и X(nl|r) мы использовали процедуру Фурье-разложения волновых функций лигандов, которые выбраны в виде функций Рутаана [22], по функциям центрированных на центральном ионе. Расчеты дополнительных потенциалов и энергетических параметров ионов кластера проводились с помощью программы, описанной в [7].

Отметим, что влияние релятивистских эффектов для ионов группы железа сравнимо с влиянием окружения; мы использовали приближение Хартри–Фока–Паули, в котором учитываются основные релятивистские эффекты: зависимость массы электрона от скорости, контактное и спин-контактное взаимодействия [1–3,8]. Учет релятивистских эффектов приводит к перенормировке радиальных интегралов. Схема расчета электронной структуры примесных ионов дает результаты, в значительной мере соответствующие экспериментальным данным, при рассмотрении как оптических спектров примесных кристаллов, так и энергий линий рентгеновского характеристического излучения [6,7].

Учет штарковского расщепления уровней свободного иона в приближении теории кристаллического поля

позволяет записать выражение для энергии Штарк-компонент в виде

$$E(nl^{N}|\alpha\alpha' LSJ\Gamma) = E_{0} + \sum_{k} f_{k}(l^{N}, \alpha\alpha' LS)F_{k}(nl, nl) + \chi(LSL'S'J)\eta(nl) + \sum_{k,q,i} B_{kq}Y_{kq}(\Theta_{i}, \Phi_{i}), \quad (4)$$

где параметры кристаллического поля можно определить по реперным значениям $B_{kq \text{ test}}$ по формуле

$$B_{kq} = B_{kq \text{ test}} \frac{(nl|r^k|nl)}{(nl|r^k|nl)_{\text{test}}} \frac{R_{\text{test}}^{k+1}}{R^{k+1}},$$
(5)

изменение распределения электронной плотности учитывается при помощи изменения значений $(nl|r^k|nl)$ и *R*.

На первом этапе решается задача для кластера, состоящего из иона Ме и лигандов, поскольку влияние ионов последующих координационных сфер на распределение радиальных волновых функций относительно невелико (около 1%) и на первом этапе им можно пренебречь. Вместе с тем нет никаких ограничений на число ионов в рассматриваемом кластере.

Электронная структура *nl*-ионов в Me⁺ⁿ: [O⁻²]_k-кластерах

Изменение энергии d-p(s)- и f-d(p)-взаимодействия при переходе свободного nl-иона в кристалл или при действии гидростатического давления, равномерно изменяющего межионные расстояния кластера, рассмотрим на примере ионов Cr^{+n} в кластере $\operatorname{Cr}^{+n}: [\operatorname{O}^{-2}]_6$. В табл. 1 приведены значения радиальных интегралов, определяющих схему уровней $3d^N$ -конфигурации, а также интегралов, определяющих энергию 3d-4p-взаимодействия, $F^k(3d, 4p)$ и $G^k(3d, 4p)$ для иона Cr^{+3} в свободном состоянии и в кластере. Как видно, полученные данные для $3d^N$ -конфигурации достаточно хорошо соответствуют известным результатам.

Из табл. 1 следует, что при переходе ионов хрома из свободного состояния в кристалл значения радиальных интегралов уменьшаются от 25 до 700%. Значения параметров, определяющих энергию d-p-взаимодействия, уменьшаются в большей степени, чем параметры 3d-оболочки. Как и следовало ожидать, наибольшее отличие наблюдается в изменении среднего радиуса 3d-и 4p-оболочек. Значение $\langle r \rangle_{3d}$ увеличивается на 5% при R = 2.1 Å по сравнению со свободным ионом и в дальнейшем возрастает на 46%. Значения $\langle r \rangle_{4p}$ увеличиваются на 14% при R = 2.1 Å.

С уменьшением *R* происходит существенное изменение относительной энергии $3d^{N-1}4p$ -конфигурации: она увеличивается с 17.8 до 21.8 eV при переходе из свободного состояния в кристалл (R = 2.1 Å), а затем уменьшается до 9.9 eV с уменьшением радиуса

Таблица 1. Теоретические значения радиальных интегралов иона Cr^{+3} в кластере $Cr^{+3}: [O^{-2}]_6$ при различных *R*

Интеграл	Свободный	R,Å				
	ион	2.1	1.96	1.9	1.8	1.5
		Конфигураг	ция 3d ³			
$F^2(3d, 3d), \mathrm{cm}^{-1}$	87 080	72010	58 448	50932	45 863	44 795
$F^4(3d, 3d), \text{cm}^{-1}$	54 582	42 380	35644	30 881	27 796	29 599
$\eta(3d), \mathrm{cm}^{-1}$	290.9	245.1	220.2	194.8	167.5	74.9
(3d r 3d), a.u.	1.093	1.351	1.561	1.721	1.839	2.100
Конфигурация 3d ² 4p						
$F^0(3d, 4p), \text{cm}^{-1}$	91 284	65 490	69 606	71 629	74 294	
$F^2(3d, 4p), \text{cm}^{-1}$	22 295	9455	12485	14 705	21 010	
$G^{1}(3d, 4p), \text{cm}^{-1}$	7778	2513	4924	7046	12 430	
$G^{3}(3d, 4p), \mathrm{cm}^{-1}$	7193	2001	3838	5471	11 135	
$\eta(3d), \mathrm{cm}^{-1}$	331.9	322.1	303.8	288.7	238.1	
$\eta(4p), \mathrm{cm}^{-1}$	642.0	97.6	129.6	153.3	198.8	
(3d r 3d), a.u.	1.018	1.064	1.148	1.219	1.474	
(4p r 4p), a.u.	2.734	3.538	3.314	3.210	3.045	
$\Delta E(3d^3 \rightarrow 3d^24p), eV$	17.8	21.8	16.1	9.9	11.6	

Таблица 2. Зависимость уровней энергии Cr^{+3} в кластере Cr^{+3} : $[O^{-2}]_6$ (в cm⁻¹) от R_{Cr-O}

$R_{\rm c} \circ {\rm \AA}$ (pacuet)	Уровень					
	^{2}E	$^{2}T_{1}$	${}^{4}T_{2}$	$^{2}T_{2}$	${}^4T_1(t_2^2e)$	$^{4}T_{1}(t_{2}e^{2})$
2.0 1.96 1.9	14 850 14 220 12 500	15652 14969 13113	16 500 18 100 20 500	22 171 21 538 19 392	24 229 25 811 27 659	37 661 40 324 44 176
Данные для рубина						
Эксперимент Полуэмпирический расчет	14 433 14 354	15 087 14 989	18 133 18 108	21 318 21 355	24 767 24 843	39 067 39 362

Таблица 3. Полуэмпирические и теоретические значения интегралов B, C и Dq для ионов Cr^{+3} в различных кристаллах (cm⁻¹)

Интеграл	α -Al ₂ O ₃	Y ₃ Al ₅ O ₁₂	$Gd_3Sc_5O_{12}$	$Gd_3Sc_2Ga_3O_{12}$	$Cr^{+3}:[O^{-2}]_6$
В	682	725	740	740	789
С	3120	3373	3578	3578	2829
Dq	1787	1650	1500	1500	1750

координационной сферы до 1.9 Å. Отметим, что расстояние R = 1.9 Å соответствует размерам примесного $Cr^{+3}: [O^{-2}]_6$ -кластера в рубине.

Теоретические данные, приведенные в табл. 2 для системы уровней кластера $Cr^{+3}:[O^{-2}]_6$, изменяющейся с уменьшением R, достаточно хорошо описывают экспериментальную зависимость оптического спектра кристаллов рубина от внешнего давления. Корректные результаты, полученные для параметра B, C и Dq (табл. 3) при различных R, сравниваются с данными для кластеров $Cr^{+3}:[O^{-2}]_6$ в различных лазерных кристаллах.

Отметим также, что оценивая изменение d-p-взаимодействия как отношение квадрата радиального интеграла $F^3(3d, 4p)$ к относительной энергии возбужденной конфигурации, мы получаем нелинейное изменение энергии d-p-взаимодействия. Но при R = 1.9 Å наблюдается уменьшение энергии на 10–15% по сравнению с данными для свободного иона.

Поведение двух- и четырехвалентных ионов хрома подобно рассмотренному выше с соответствующей поправкой на валентность: для Cr^{+4} изменения на 3–5% больше, чем для трехвалентных ионов, а для Cr^{+2} — мень-

Интеграл	Свободный ион	R,Å				
		2.5	2.0	1.95	1.9	1.8
		Cu ⁺	3			
<i>E</i> , a.u.	-1636.7563	0.7564	0.7539	0.7551	0.7551	0.7557
(3d r 3d), a.u.	0.8422	0.8414	0.8427	0.8434	0.9445	0.8463
$F^2(3d, 3d), \mathrm{cm}^{-1}$	129 327	99 498	98 7 5 3	98 711	98 662	98618
$F^4(3d, 3d), \mathrm{cm}^{-1}$	80874	62188	61719	61 680	61 660	61 625
$\eta(3d), \mathrm{cm}^{-1}$	925.2	910.8	909.5	909.3	908.8	908.1
Cu^{+2}						
E, a.u.	-1638.1232	0.0841	0.0839	0.035	0.0832	0.0723
ε_{3d} , a.u.	1.4789	1.4477	1.3872	1.3735	1.3532	1.3356
(3d r 3d), a.u.	0.8837	0.8989	0.9013	0.9025	0.9043	0.9070
$F^2(3d, 3d), \mathrm{cm}^{-1}$	119110	93 078	91 987	91 987	91 796	91 569
$F^4(3d, 3d), \mathrm{cm}^{-1}$	74 806	58 1 2 0	57 495	57 495	57 365	57 251
$\eta(3d), \mathrm{cm}^{-1}$	845.9	825.0	820.8	820.8	818.9	815.1

Таблица 4. Значения радиальных интегралов для ионов Cu⁺³ и Cu⁺² в кластерах Cu⁺ⁿ: [O⁻²]₆

ше. Кроме того, для иона Cr^{+2} наблюдается значительное уменьшение относительной энергии $3d^34p$ -конфигурации, что приводит к резкому увеличению энергии d-p-взаимодействия. Отметим, что энергии переходов в кластере $Cr^{+4}: [O^{-2}]_6$ соответствуют спектру кристаллов рубина после γ -облучения [23]. Тем самым подтверждается переход части ионов Cr^{+3} в состояние Cr^{+4} при облучении рубина, что ранее было показано по смещению рентгеновских CrK_{a1} -линий [21,23].

Проблема d-s-взаимодействия актуальна и при исследовании интенсивности оптических линий (при косвенном влиянии сильного s-p-взаимодействия), и при объяснении высокотемпературной сверхпроводимости. Мы рассмотрели изменение энергии d-s-взаимодействия в рамках выбранного нами подхода. Наиболее интересные, на наш взгляд, результаты получены для ионов Cu⁺² и Cu⁺³ в кластерах Cu⁺ⁿ: $[L]_k$ (для O⁻², F⁻ и Cl⁻, k = 4, 5, 6) и представлены в табл. 4, 5. Для данных кластеров наблюдается нелинейная зависимость относи-

Таблица 5. Теоретические значения радиальных интегралов и энергии $3d \rightarrow 4s$ -возбуждения для ионов Cu⁺² в $3d^84s$ -конфигурации в кластерах Cu⁺²: $[O^{-2}]_4$ при различных значениях R

Интеграл	R, Å					
	2.01	1.89	1.8	1.7	1.6	
ε_{3d} , a.u.	1.7045	1.6715	1.6378	1.5895	1.5269	
ε_{4s} , a.u.	0.9977	0.9939	0.9912	0.9884	0.9861	
(3d r 3d), a.u.	0.8297	0.8345	0.8484	0.8507	0.8556	
(4s r 4s), a.u.	2.3414	2.3516	2.3592	2.3678	2.3758	
$F^{0}(3d, 4s)$, a.u.	0.4852	0.4836	0.4812	0.4789	0.4767	
$G^{2}(3d, 4s)$, a.u.	0.0439	0.0434	0.0431	0.0430	0.0434	
$E(3d^9 \rightarrow 3d^84s), \ eV$	1.892	1.713	1.428	1.632	1.784	

тельной энергии возбужденной 3d^{N-1}4s-конфигурации, усредненной по всем термам [6], от значений k и R. Наряду с этим почти линейно изменяются интегралы Слэтера, спин-орбитальной связи и т.д. В результате при некоторых значениях координационного числа и межионного расстояния для двух- и трехвалентных ионов меди наблюдаются экстремальные значения энергии взаимодействия. Минимум относительной энергии возбуждения 3*d*-электрона на 4*s*-оболочку достигается при соответствующих межионных расстояниях: R = 1.85 Å для Cu^{+3} при k = 6 и 1.95 Å для Cu^{+2} при k = 4. Важным является результат 40% уменьшения энергии возбуждения 3d-электрона на 4s-оболочку для Cu^{+2} в тетраэдрическом окружении. Резкое уменьшение относительной энергии $3d^94s$ -конфигурации иона Cu⁺² наряду с ростом значений радиальных интегралов $F^{0}(3d, 4s)$ и $G^{2}(3d, 4s)$ приводит к увеличению энергии *d*-*s*-взаимодействия практически в 2 раза. Наличие абсолютного максимума энергии d-s-взаимодействия в ионах Cu^{+2} в окружении четырех ионов кислорода при R = 1.95 Å, надо полагать, имеет непосредственное отношение к явлению высокотемпературной сверхпроводимости, поскольку для других рассчитанных нами ионов (Fe, Co, Ni и Zn) подобный экстремум не наблюдался.

При сравнении результатов расчета зависимости радиальных интегралов от межионного расстояния для Меионов в окружении ионов кислорода, фтора и хлора мы обнаружили существенные различия в электронной структуре соответствующих кластеров. Для оксидного окружения характерно увеличение среднего радиуса 3*d*оболочки при переходе свободного иона в кластер с последующим увеличением значений $\langle r \rangle_{3d}$ по мере уменьшения *R*. Для фторидного окружения изменения при переходе свободного иона в кристалл не так велики, что определяется различной степенью локализации

		R.Å				
Интеграл		2.2	2.37	2.4		
	UIII	U^{+2} : $[F^{-}]_9$	$U^{+2}\!:\![O^{-2}]_{12}$	U^{+2} : [Cl ⁻]9		
ε_{5f} , a.u.	0.8935	0.9104	0.9218	0.9342		
ε_{6p} , a.u.	1.3552	1.3662	1.3796	1.3815		
$F^2(5f, 5f), \mathrm{cm}^{-1}$	75 169	65 785	60 560	59 200		
$F^4(5f, 5f), \mathrm{cm}^{-1}$	48 895	42 890	39 406	38 496		
$F^{6}(5f, 5f), \mathrm{cm}^{-1}$	35 810	31 370	28 850	28 190		
$\eta_{5f}, \mathrm{cm}^{-1}$	2161.1	2086.7	2040.0	2011.8		
$\langle r \rangle_{5f}$, a.u.	1.3249	1.4611	1.4784	1.4814		
$\langle r \rangle_{6p}$, a.u.	1.9452	2.0977	2.1831	2.2212		
	Fm IV	${ m Fm^{+3}}:[{ m F^{-}}]_9$	$Fm^{+3}:[O^{-2}]_{12}$	Fm ⁺³ :[Cl ⁻]9		
\mathcal{E}_{5f} , a.u.	1.9516	1.9741	1.9940	1.9985		
ε_{6p} , a.u.	2.3189	2.3267	2.3377	2.3406		
$F^2(5f, 5f), \mathrm{cm}^{-1}$	103 218	100 380	99 560	98 330		
$F^4(5f, 5f), \mathrm{cm}^{-1}$	68 043	66 180	65 730	64 900		
$F^{6}(5f, 5f), \mathrm{cm}^{-1}$	48 891	47 670	47 180	46 870		
$\eta_{5f},\mathrm{cm}^{-1}$	5294.7	5258.8	5105.4	5007.0		
$\langle r \rangle_{5f}$, a.u.	0.9746	1.0376	1.0490	1.0572		
$\langle r \rangle_{6p}$, a.u.	1.7297	1.7421	1.7568	1.7589		

Таблица 6. Теоретические значения радиальных интегралов для U III и Fm IV, а также для Me^{+n} : $[L]_k$ -кластера (лиганды F⁻, O⁻², Cl⁻) при различных значениях R

2*p*-функций фтора и кислорода. Увеличение "размеров" 4*s*(*p*)-оболочек для Ме-ионов во фторидном окружении происходит вплоть до значений *R* = 1.5 Å. Тогда как для 3*d*-оболочки вначале наблюдается уменьшение среднего радиуса, а начиная с *R* = 1.9 Å, имеет место увеличение значений $\langle r \rangle_{3d}$ для оксидов. Начиная с *R* = 1.6 Å и при меньших значениях *R*, происходит процесс "сжимания" 3*d*-оболочки, вызванный значительным перекрыванием 2*p*-функций кислорода и 3*d*- (4*s*-, 4*p*-) орбиталей иона группы железа и началом сильного отталкивания электронов ближайших ионов в силу принципа Паули [24]. По этой же причине при расстояниях *R* \leq 2.0 Å в хлоридах происходит уменьшение значений $\langle r \rangle_{3d}$ и $\langle r \rangle_{4s}$.

Важная особенность фторидных кластеров — уменьшение энергии d-s-взаимодействия с уменьшением R(ростом давления). В качестве примера в [25] приведены данные расчета кластера Ni⁺²: [F⁻]₆ при R = 2.1-1.7 Å. Отметим, что для оксидов значения $F^0(3d, 4s)$ слабо зависят от R. Для хлоридов они резко увеличиваются при уменьшении R.

Зависимости радиальных интегралов и энергии d-sвзаимодействия от числа лигандов являются практически линейными для всех рассмотренных нами типов окружения. Некоторая аномалия наблюдается только для кластеров Cu⁺²: [O⁻²]₆.

Интересные результаты получены для актинидов, в частности для ионов урана в различных кластерах. Электронная структура ионов группы актиния при переходе из свободного состояния в кристалл изменяется подобно электронной структуре 3*d*-ионов (как качественно, так и количественно). Часть полученных результатов приведена в табл. 6 для основных конфигураций 5*f*-ионов в свободном состоянии и в кластерах. Табл. 7 содержит

Таблица 7. Теоретические значения энергий K_{α} - и L_{α} -линий ряда 4f- и 5f-ионов в кластере $Me^{+n}: [O^{-2}]_8$ (в eV) при R = 2.37 Å

Ион	$K_{lpha 1}$	$K_{\beta 1}$	$L_{\alpha 1}$
Nd^{+2}	37 337.290	42 250.942	5370.985
Nd^{+3}	37 336.610	42 248.875	5369.708
Nd^{+4}	37 335.741	42 246.471	5368.449
Eu^{+2}	40071.174	45 371.500	5852.357
Eu^{+3}	40 070.420	45.369.567	5848.793
Eu^{+4}	40 069.405	45 367.192	5847.622
Gd^{+2}	42921.661	48 620.131	6062.622
Gd^{+3}	42 920.521	48 618.235	6063.971
Gd^{+4}	42 920.118	48 615.998	6060.614
Yb^{+2}	52 1 56.939	58 580.850	7421.563
Yb^{+3}	52 1 55.897	58 578.564	7426.668
Yb^{+4}	52 1 55.077	58 576.031	7429.100
U^{+2}	95912.345	108 809.007	13 639.793
U^{+3}	95912.037	108 808.394	13 239.528
U^{+4}	95911.663	108 807.659	13 639.200
Np^{+2}	98 307.960	111 517.588	13 970.953
Np^{+3}	98 307.642	111 516.963	13 970.674
Np^{+4}	98 307.262	111 516.221	13 970.346
$\tilde{\mathrm{Bk}^{+2}}$	108 277.894	122 779.219	15 339.303
Bk^{+3}	108 277.543	122 778.545	15 339.005
Bk^{+4}	108 277.142	122777.775	15 338.668

результаты расчетов энергий линий характеристического излучения, которые изменяются достаточно сильно для тяжелых ионов. Изменение энергий рентгеновских линий актинидов в кластере обусловлено достаточно сильным взаимодействием 5f-электронов с лигандами. Полученные результаты как для схем уровней, так и для энергий K-, L-рентгеновских линий хорошо согласуются с экспериментом.

Отметим, что для редкоземельных ионов высокая эффективность предложенного метода реализуется при использовании волновых функций Хартри в качестве нулевого приближения.

3. Рентгеновские переходы *nl*-ионов в кластерах

Рассмотрение рентгеновских спектров обычно проводится в предположении, что энергия переходов внутренних электронов не зависит от окружения *nl*-иона. Вместе с тем хорошо известно смещение рентгеновских линий (РЛ) 3*d*- или 4*f*-ионов, связанное с изменением типа химической связи соединения и электронного состояния (валентности) *nl*-иона, — так называемый химический сдвиг РЛ [9].

Экспериментально наблюдается валентный сдвиг РЛ (ВСРЛ), вызванный изменением валентности иона в твердых телах под действием радиации или термической обработки [11,21,23].

Электронный переход иона с nl^N -конфигурацией с участием внутренних n'l'- и n''l''-электронов можно записать в стандартном виде $n'l'^{-1}nl^N \rightarrow n''l''^{-1}nl^N$. Очевидно, что энергия РЛ определяется разностью энергий центра тяжести исходной $(n'l'^{-1}nl^N)$ и конечной $(n''l''^{-1}nl^N)$ конфигураций

$$E_x = E_{n'l'}^N - E_{n''l''}^N. (6)$$

Как показали расчеты, энергия возбужденного состояния *nl*-иона изменяется на величину порядка 100 а.u., *a* — энергия РЛ — на 1–10 eV. При изучении изменения валентности ионов важной величиной является не сама энергия РЛ, а ВСРЛ

$$\Delta E_x = E_x^{+n} - E_x^{+n-1}, \tag{7}$$

теоретическое значение которого должно быть рассчитано с максимальной точностью. Это связано с тем, что теоретическое значение ВСРЛ часто определяет точность расчета концентрации ионов, изменивших свою валентность.

Теоретические значения энергий $K_{\alpha 1,2}$ - $(1s_{1/2}nl^N \rightarrow 2p_{1/2,3/2}^5nl^N)$, K_{β} - $(1s_{1/2}nl^N \rightarrow 3p_{1/2,3/2}^5nl^N)$, L_{α} - $(2p_{1/2,3/2}^5nl^N \rightarrow 3d_{3/2,5/2}^5nl^N)$ и других рентгеновских переходов ионов групп железа, лантана и актиния в различных кластерах достаточно точно соответствуют экспериментальным данным (относительное расхождение порядка 0.1%), что дает уверенность в высокой

точности значений ВСРЛ. В качестве примера в табл. 7 представлены значения энергий РЛ для ряда ионов групп лантана и актиния. Отметим, что подобные данные для других ионов групп железа, лантана и актиния приведены в работе [25].

Таким образом, проведенные расчеты кластеров Me^{+n} : $[L]_k$ при разных значениях R и различных типах лигандов позволяют сделать ряд выводов и заключений.

Прежде всего, наш подход полностью описывает существующие экспериментальные результаты как в случае оптических спектров примесных ионов группы железа и актиния, так и в случае рентгеновских спектров [6,7].

В кислородсодержащих кластерах при изменении R от 2.0 до 1.9-1.8 Å происходит уменьшение относительной энергии возбужденных $3d^{N-1}4s$ - или $3d^{N-1}4p$ конфигураций. Наиболее интересные результаты получены для ионов меди: наблюдается резкое уменьшение энергии возбуждения и увеличение энергии d-sвзаимодействия для Cu⁺² в окружении четырех ионов кислорода при расстояниях, полностью соответствующих структуре высокотемпературной керамики. Этот результат получен только для ионов Cu⁺² и не наблюдается для ионов Cu+3, а также для других рассмотренных нами Me^{+n} : $[L]_k$ -кластеров. Сильное d-s-взаимодействие ионов Cu⁺² должно привести к искажению зоны проводимости и, возможно, к образованию зоны, построенной на волновых функциях этих ионов. Нечто похожее, по-видимому, имеет место в кристаллах перовскита SrTiO₃, в которых ионы Ti⁺⁴ частично переходят в состояние Ti⁺³ [26].

Отметим, что для ионов Ni и Zn подобное явление не наблюдается. Для этих ионов в кислородном окружении, как и для Cu⁺² и Cu⁺³ с лигандами фтора и хлора, зависимости энергии возбуждения и энергии d-s-взаимодействия являются практически линейными. Для фторидов энергия d-s-взаимодействия с давлением уменьшается (на несколько процентов), а для хлоридов — увеличивается на 1–2%.

Рассчитанные в рамках нашего подхода значения энергий РЛ характеристического излучения *nl*-ионов и ВСРЛ оказываются близкими к экспериментальным значениям, что позволяет использовать РЛ для изучения валентных переходов регулярных и примесных *nl*-ионов в твердых телах.

Список литературы

- [1] Дж. Слэтер. Методы самосогласованного поля для молекул и твердых тел. Мир, М. (1972).
- [2] J. Morrison. Many-Body Calculation. Springer-Verlag, N.Y. (1987).
- [3] R.D. Cowan. The Theory of Atom Structure and Spectra. Univ. California Press, Berkely (1981).
- [4] Н.А. Кулагин, Д.Т. Свиридов. В кн.: Проблемы кристаллографии. Наука, М. (1987).

- [5] Ф. Бассани, Дж. Пастори Парравичини. Электронные состояния и оптические переходы в твердых телах. Наука, М. (1982).
- [6] Н.А. Кулагин, Д.Т. Свиридов. Методы расчета электронных структур свободных и примесных ионов. Наука, М. (1986).
- [7] Н.А. Кулагин, Д.Т. Свиридов. Введение в физику активированных кристаллов. Выща шк., Харьков (1990).
- [8] Ch. Fisher. The Hartree-Fock Method for Atoms. Wiley, N.Y. (1977).
- [9] О.И. Сумбаев. УФН **124**, 281 (1978).
- [10] N. Kulagin. J. Phys. B16, 1695 (1983).
- [11] Н.А. Кулагин, В.Ф. Сандуленко. ФТТ 31, 133 (1989).
- [12] N.A. Kulagin. Physica B222, 173 (1996).
- [13] N.A. Kulagin. Physica **B245**, 52 (1998).
- [14] J. Jorgensen, H. Schuttler, D. Hinks, D. Capone. et al. Phys. Rev. Lett. 58, 1028 (1987).
- [15] L. Matheiss. Phys. Rev. Lett. 58, 1032 (1987).
- [16] Я.О. Довгий, Л.Т. Кадиллюк, И.В. Китык, Р.В. Луциев. ФТТ 32, 3099 (1990).
- [17] Н.А. Кулагин, Д.Т. Свиридов. ДАН СССР 266, 616 (1982).
- [18] Н.А. Кулагин. ФТТ 27, 2038 (1987).
- [19] Д. Хартри. Расчеты атомных структур. ИЛ., М, (1960).
- [20] Н.А. Кулагин. Опт. и спектр. 63, 964 (1987).
- [21] N.A. Kulagin, D.T. Sviridov. J. Phys. C (Lond.) 17, 4539 (1984).
- [22] E. Clementi, C. Roetti. Atom. Data & Nucl. Data Tabl. 14, 177 (1974).
- [23] И.И. Залюбовский, Н.А. Кулагин, Л.А. Литвинов, Л.П. Подус. ФТТ 23, 846 (1981).
- [24] P. Gombas. Theorie und Losunsmethoden des Mehreilchenproblems der Wellenmechanik. Basel (1950).
- [25] N. Kulagin. J. Alloys. Comp. 300-3001, 56 (2000).
- [26] Н.А. Кулагин. ФТТ 25, 3392 (1983).