Экситон-магнонные взаимодействия в монокристаллах Ni_c Mg_{1-c}O

© Н. Миронова-Улмане, В. Скворцова, А. Кузьмин, И. Силдос*

Институт физики твердого тела, Латвийский университет, LV-1063 Рига, Латвия * Институт физики, EE-2400 Тарту, Эстония

E-mail: ulman@latnet.lv

Влияние химического состава и температуры на экситон-магнонные взаимодействия в монокристаллах Ni_cMg_{1-c}O исследовалось по оптическим спектрам поглощения в области магнито-дипольного ${}^{3}A_{2g}(G) \rightarrow {}^{3}T_{2g}(F)$ и электро-дипольного ${}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D)$ переходов. Две бесфононные линии, ~ 7800 и ~ 7840 cm⁻¹, расположенные с низкоэнергетической стороны магнито-дипольной полосы, были приписаны чисто экситонному переходу и экситон-одномагнонному переходу в центре зоны Бриллюэна. Интенсивность экситон-одномагнонного пика быстро уменьшается с ростом концентрации ионов магния и/или ростом температуры: пик полностью исчезает при $T = 6 \,\mathrm{K}$ для c < 0.95 и при 130 K для $c \ge 0.99$. Таким образом, вклад длинноволновых магнонов в спектрах оптического поглощения $Ni_cMg_{1-c}O$ становится пренебрежимо малым при температурах, существенно меньших температуры антиферромагнитного упорядочения — точки Нееля Т_N. Этот результат можно объяснить существенным уменьшением характеристической длины спинспиновых взаимодействий при увеличении концентрации диамагнитных примесных ионов магния (статическое разупорядочение) и / или при увеличении амплитуды термических колебаний атомов (динамическое разупорядочение). В то же время пик 14500 cm⁻¹, расположенный в области электро-дипольного перехода и соответствующий возбуждению экситона и двух магнонов на краю зоны Бриллюэна, наблюдается вплоть до температуры Нееля. Это объясняется чувствительностью коротковолновых магнонов к ближнему магнитному порядку, сохраняющемуся до T_N .

Настоящая работа частично финансировалась грантами Латвийского правительства (N 01.0806 и 01.0821) и научного фонда Эстонии (N 3453).

Чистый оксид никеля NiO является антиферромагнетиком 2-го типа с температурой Нееля $T_N = 523$ K. При замещении части ионов никеля ионами магния происходит образование непрерывного ряда твердых растворов Ni_c Mg_{1-c}O [1]. Магнитная фазовая диаграмма системы Ni_cMg_{1-c}O, установленная ранее методами упругого рассеяния нейтронов [1] и SQUID магнетометрии [2], указывает на существование четырех областей (рис. 1) [1]: 1) область гомогенного антиферромагнетика $(0.63 \le c \le 1), 2)$ область кластерного антиферромагнетика $(0.4 \le c < 0.63), 3)$ область типа спинового стекла $(0.25 \le c < 0.4)$ и 4) область парамагнетика ($c \le 0.2$). Необходимо отметить, что оба экспериментальных метода [1,2] чувствительны к дальнему магнитному порядку. Микроскопические исследования [3] влияния состава и температуры на доменную структуру монокристаллов Ni_cMg_{1-c}O позволили получить дополнительную информацию. Было установлено [3], что доменная структура наблюдается при температурах существенно ниже T_N (рис. 1) и является более чувствительной к составу твердых растворов, чем значение температуры Нееля. Магнитный порядок в твердых растворах Ni_cMg_{1-c}O также исследовался методами оптического поглощения [4], люминесценции [5] и рамановского рассеяния [6].

В настоящей работе исследован вклад экситонмагнонных взаимодействий в оптические спектры поглощения монокристаллов $Ni_c Mg_{1-c}O$. Основное внимание уделено зависимости одномагнонного и двухмагнонного вкладов от состава твердых растворов и температуры.

1. Образцы и методика измерений

Монокристаллы Ni_cMg_{1-c}O были выращены на подложках MgO, ориентированных в плоскости (100), по методу химических транспортных реакций [7,8]. Образцы имели зеленоватую окраску, интенсивность которой зависела от содержания никеля и изменялась от зеленой для c = 1 до светло-зеленой для малых

Рис. 1. Магнитная фазовая диаграмма твердых растворов $Ni_c Mg_{1-c}O$, полученная методом упругого рассеяния нейтронов [1] и SQUID магнетометрии [2]. Область бесконечного антиферромагнитного кластера [3] показана светлыми квадратами. Р — область парамагнитной фазы, АF — область антиферромагнитной фазы и CSG — область кластерного спинового стекла.

Рис. 2. Низкоэнергетическая часть магнито-дипольной полосы поглощения ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ в монокристаллах Ni_cMg_{1-c}O при T = 6 К. Пики, соответствующие чистому экситонному переходу и экситон-одномагнонному переходу, обозначены A и B соответственно.

значений с. Химический состав твердых растворов контролировался методом нейтронно-активационного анализа [9]: содержание никеля соответствовало стехиометрическому составу в пределах $\pm 0.01\%$. Оптические спектры поглощения измерялись на двухлучевом спектрофотометре Jasco V-570, использующем

вольфрамовую лампу в качестве источника. Спектры поглощения регистрировались фотоумножителем и фотоэлементом PbS в диапазоне энергий 11 110–18 500 и 7600–12 500 ст⁻¹ соответственно. Температура образцов изменялась в интервале 5–293 К с точностью ±1 К с использованием гелиевого криостата.

2. Результаты и их обсуждение

Оптические спектры поглощения оксида никеля NiO и твердых растворов Ni_cMg_{1-c}O можно объяснить с помощью диаграммы энергетических уровней свободного иона никеля Ni²⁺ (3d⁸) в кристаллическом поле кубической симметрии. Наблюдаемые полосы поглощения соответствуют запрещенным по четности d-d переходам, три из которых ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F), {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ и ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ разрешены по спину ($\Delta S = 0$), в то время как остальные запрещены. Далее будем рассматривать две низшие по энергии полосы, отвечающие магнито-дипольному переходу ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ при ~ 8800 сm⁻¹ и электро-дипольному переходу ${}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D)$ при ~ 13 800 сm⁻¹.

При низких температурах (T < 100 K) магнитодипольная полоса поглощения ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ в NiO состоит из двух узких бесфононных линий (пики A и B на рис. 2 и 3) и широкой электронно-колебательной полосы с несколькими максимумами, которые отвечают одновременному возбуждению экситона и фононов, [4,10]. Пик A при ~ 7800 cm⁻¹ соответствует экситонному переходу, а пик B при ~ 7840 cm⁻¹ экситон-одномагнонному возбуждению с участием магнона с k = 0, т.е. в центре зоны Бриллюэна [4,10].

Рис. 3. Температурная зависимость перехода ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ в монокристаллах NiO и Ni_{0.99}Mg_{0.01}O. Пик A соответствует экситонному переходу, пик B — экситон-одномагнонному возбуждению.

Рис. 4. a — изменение положения пиков A и B с температурой в монокристаллах NiO и Ni_{0.99}Mg_{0.01}O. Разница между двумя пиками остается постоянной и равна энергии магнона $\omega_{1M} = 41 \text{ cm}^{-1}$. b — отношение I(B)/I(A) амплитуд пиков A и B в монокристаллах NiO и Ni_{0.99}Mg_{0.01}O.

Энергия магнона определяется энергетическим интервалом между пиками A и B [10]. Изменение температуры и замещение ионов никеля ионами магния приводит соответственно к однородному и неоднородному уширению полосы поглощения, в результате чего изменяется интенсивность и положение как пиков A и B, так и электронно-колебательной полосы [11].

На рис. З показана температурная зависимость магнито-дипольного перехода ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ в NiO и твердом растворе Ni_{0.99}Mg_{0.01}O. В обоих случаях пик В исчезает при температуре ~ 110 К, существенно меньшей температуры Нееля $T_N \sim 523$ К. Разница между положениями пиков A и B (рис. 4, a) не изменяется с температурой, что означает постоянство энергии магнона. Тем не менее с ростом температуры энергия обоих пиков, а также максимума полосы поглощения уменьшается, что можно объяснить изменением силы кристаллического поля в результате термического расширения кристаллической решетки [8]. Другим интересным результатом является нелинейное изменение отношения I(B)/I(A) амплитуд пиков A и B (рис. 4, b). При сравнении двух зависимостей на рис. 4 видно, что отношение I(B)/I(A) изменяется быстрее при температуре ниже $60 \,\mathrm{K}$, когда положение пиков A и B не изменяется. В то же время положение обоих пиков изменяется в сторону уменьшения энергии при темпераутре выше 60 К, хотя отношение их амплитуд остается постоянным в пределах точности нашего эксперимента.

Поглощение, обусловленное возбуждением длинноволнового магнона в центре зоны Бриллюэна, чувствительно к дальнему магнитному порядку, поэтому существует зависимость между пиком *B* и магнитной структурой оксида никеля и твердых растворов. Замещение 10% ионов никеля на ионы магния (c > 0.9) приводит к сильному уменьшению интенсивности пика B уже при $T = 6 \,\mathrm{K}$ (рис. 2), т.е. при температуре значительно ниже температуры фазового перехода из антиферромагнитного в парамагнитное состояние (рис. 1) [1,2]. В пределах точности нашего эксперимента энергия магнона в $Ni_cMg_{1-c}O$ для c > 0.95 сохраняется постоянной и равна значению для чистого NiO $\omega_{1M} \approx 41 \,\mathrm{cm}^{-1}$. Уменьшение значения ω_{1M} на $\sim 8 \,\mathrm{cm}^{-1}$ наблюдалось для c = 0.95 (рис. 2). При температуре 6 К вклад одномагнонного процесса не наблюдается в виде изолированного пика для $c \leq 0.9$, тем не менее в образце Ni_{0.90}Mg_{0.10}O хорошо видна сильно размытая особенность на месте пиков А и В (рис. 2). Согласно магнитной фазовой диаграмме (рис. 1), при температуре 6К антиферромагнитный порядок наблюдается в твердых растворах Ni_cMg_{1-c}O при $c \gtrsim 0.4$ [1,2]; более того, при $c \gtrsim 0.6$ существует непрерывная антиферромагнитная доменная структура [3]. В чистом NiO или в твердых растворах с малым содержанием ионов магния непрерывная антиферромагнитная доменная структура наблюдается до температуры $\sim 450 \, {\rm K}$ [3], в то время как антиферромагнитный порядок существует при температурах существенно выше комнатной, вплоть до 523 К. Эти результаты отражают макроскопические магнитные свойства NiO и Ni_cMg_{1-c}O, в то время как оптические спектры поглощения чувствительны к магнитным взаимодействиям на микроскопическом уровне. Наши результаты показывают, что длинноволновые магноны в центре зоны Бриллюэна очень чувствительны к нарушениям дальних спин-спиновых корреляций, происходящих при увеличении температуры и / или разбавлении немагнитными ионами.

Рис. 5. Температурная зависимость переходов ${}^{3}A_{2g}(F) \to {}^{3}T_{1g}(F), {}^{1}E_{g}(D)$ в монокристалле Ni_{0.60}Mg_{0.40}O.

На рис. 5 показана температурная зависимость ${}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D)$ электро-дипольного перехода в Ni_{0.60}Mg_{0.40}O. Отметим, что полоса поглощения ${}^{1}E_{g}(D)$ частично перекрывается с переходом на уровень ${}^{3}T_{1g}(F)$, расположенный около 15 700 сm⁻¹. Интенсивность полосы ${}^1E_g(D)$ резко уменьшается в интервале температур 200-275 К, несколько ниже температуры Нееля T_N ~ 320 К. Наши предыдущие исследования [12] аналогичной полосы поглощения в монокристалле KNiF₃ позволяют сделать вывод о том, что форма полосы ${}^{1}E_{g}(D)$ определяется электронноколебательными процессами, при которых происходит одновременное возбуждение экситона и одного или нескольких фононов, и экситон-двухмагнонным процессом, при котором возбуждаются экситон и два магнона на краю зоны Бриллюэна. Чисто экситонный переход в спектре поглощения не наблюдается, так как является запрещеным по четности и спину: он должен находиться около 12 500 ст⁻¹. Возбуждаемые на краю зоны Бриллюэна магноны являются коротковолновыми и, следовательно, чувствительны к ближнему магнитному порядку. Поэтому поглощение, отвечающее экситон-двухмагнонному процессу, регистрируется до температуры Нееля (рис. 5). Схожее поведение вклада двухмагнонного процесса было обнаружено ранее в рамановских спектрах NiO [6] и KNiF₃ [13]. Энергия ω_{2M} , необходимая для возбуждения двух магнонов в NiO, приблизительно равна $\sim 1400\,{
m cm}^{-1}$, что существенно больше чем в KNiF₃ ($\omega_{2M} = 813 \,\mathrm{cm}^{-1}$) [12]. Разница двух энергий объясняется более сильным сверхобменным взаимодействием между ионами никеля в NiO.

Таким образом, в работе исследованы температурная и концентрационная зависимости оптических спектров поглощения монокристаллов NiO и $Ni_cMg_{1-c}O$, выращенных на подложках MgO(100). Основное внимание уделено магнонному вкладу в полосах поглощения, соответствующих магнито-дипольному ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F) \ (\sim 8800 \ {\rm cm}^{-1})$ и электро-дипольному ${}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D) \ (\sim 13\,800\,{\rm cm}^{-1})$ переходам. Обнаружено, что вклад двухмагнонного поглощения изменяется в близком соответствии с магнитной фазовой диаграммой для Ni_cMg_{1-c}O; в то же время одномагнонный вклад наблюдается только при температурах существенно ниже температуры Нееля. Полученные результаты объяснены разным происхождением магнонов. В двухмагнонном поглощении участуют магноны на краю зоны Бриллюэна, в то время как в одномагнонном процессе магнон возбуждается в центре зоны Бриллюэна. Поскольку магноны на краю зоны Бриллюэна являются коротковолновыми, они чувствительны к ближнему магнитному порядку, который сохраняется при достаточно высокой температуре и большой степени разбавления оксида никеля ионами магния. В то же время магнон в центре зоны Бриллюэна является длинноволновым и поэтому особенно чувствителен к термическому и/или структурному нарушениям магнитного порядка, возникающим уже при достаточно низких температурах и 10% замещении.

Список литературы

- A.Z. Menshikov, Yu.A. Dorofeev, A.G. Klimenko, N.A. Mironova. Phys. Stat. Sol. (b) 164, 275 (1991).
- [2] Z. Feng, M.S. Seehra. Phys. Rev. B45, 2184 (1992).
- [3] Н.А. Миронова, А.И. Беляева, О.В. Милославская, Г.В. Бандуркина. Укр. физ. журн. 34, 848 (1981).
- [4] Н.А. Миронова, Г.А. Гринвалд, В.Н. Скворцова, У.А. Улманис. ФТТ 23, 1498 (1981).
- [5] G.A. Grinvald, N.A. Mironova. Phys. Stat. Sol. (b) 99, K101 (1980).
- [6] R.E. Dietz, G.I. Parisot, A.E. Meixner. Phys. Rev. B4, 2302 (1971).
- [7] Н.А. Миронова, Г.В. Бандуркина. Изв. АН ЛатвССР. Сер. физ. и техн. наук 4, 14 (1975).
- [8] Н.А. Миронова, У.А. Улманис. Радиационные дефекты и ионы металлов группы железа в оксидах. Зинатне, Рига (1988).
- [9] Д.В. Рискстиня, И.Э. Циркунова, Г.Я. Эглите. Изв. АН ЛатвССР. Сер. физ. и техн. наук 1, 3 (1975).
- [10] N. Mironova, V. Skvortsova, A. Kuzmin, I. Sildos, N. Zazubovich. In: Defects and Surface-Induced Effects in Advanced Perovskites / Ed. by G. Borstel, A. Krumins, D. Millers. Kluwer Academic, Dordrecht (2000). P. 155.
- [11] K.K. Rebane. In: Zero-Phonon Lines and Spectral Hole Burning in Spectroscopy and Photochemistry / Ed. by O. Sild, K. Haller. Springer, Berlin (1988). P. 1.
- [12] N. Mironova-Ulmane, V. Skvortsova, A. Kuzmin, I. Sidos. Ferroelectrics 258, 177 (2001).
- [13] S.R. Chinn, H.J. Zeiger, J.R. O'Connor. Phys. Rev. B3, 1709 (1971).