Фотолюминесценция и туннельный перенос заряда в сверхрешетках CaF₂: RE²⁺-CdF₂ на Si (111)

© С.В. Гастев, С.Э. Иванова*, Н.С. Соколов, С.М. Сутурин, Е.М. Лангер**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия **Институт физики Польской академии наук, 02-668 Варшава, Польша E-mail: gastev@fl.ioffe.rssi.ru

Рассмотрено нестационарное поведение фотолюминесценции ионов Eu²⁺ и Sm²⁺ в сверхрешетках CaF₂: RE²⁺–CdF₂ при непрерывной оптической накачке. Нестационарность фотолюминесценции обусловлена спонтанным туннелированием электронов из возбужденных состояний 4*f* 5*d* в зону проводимости соседнего слоя CdF₂. Составлена и численно проанализирована система уравнений баланса. Показано, что значения энергий фотоионизации состояний 4*f* 5*d* могут быть получены из экспериментальных временны́х зависимостей изменения интенсивности фотолюминесценции в сверхрешетке с толщиной от 10 до 20 монослоев CaF₂ и CdF₂.

Работа поддержана грантами ИНТАС (N 97-10528), Научного общества Швейцарии (N 7SUPJ062359) и Минпромнауки РФ.

Процессы переноса электрического заряда между редкоземельными ионами при фотохимических реакциях в твердых телах в течение многих лет привлекают внимание исследователей: достаточно указать на ставшие уже классическими работы Феофилова [1] и Вельбера [2], а также на работы, опубликованные в настоящее время [3,4]. В объемных кристаллах такой перенос в основном осуществляется при фотовозбуждении носителей заряда в зону проводимости кристаллической матрицы и последующем их захвате на те или иные ловушки.

Значительную роль процессы переноса заряда играют в различных наноструктурах на основе фторидов. На Х Феофиловском симпозиуме сообщалось о первых наблюдениях нестационарного поведения люминесценции Sm²⁺ и Eu²⁺ в гетероструктурах со слоями фторидов [5] и обсуждалась возможная связь этого эффекта с процессами переноса заряда. В [6] была продемонстрирована важная роль туннельного механизма переноса электронов из возбужденного состояния $4f^{6}5d$ ионов Eu²⁺, помещенных в слои CaF₂ сверхрешеток CaF2: Eu-CdF2, через интерфейс CaF2/CdF2 в зону проводимости соседних слоев CdF₂. В [7] этот эффект был изучен в сверхрешетках (SL) с селективно легированными европием слоями. Позднее аналогичный эффект наблюдался в сверхрешетках CaF2:Sm-CdF₂ [8]. Ход фотохимической реакции, происходящей при оптическом возбуждении таких структур, можно представить как $RE^{2+} + h\nu = RE^{3+} + электрон$ в зоне проводимости слоя CaF₂, где RE = Eu или Sm. Спонтанное туннелирование электронов через интерфейс оказывается возможным вследствие специфического взаимного расположения энергетических зон SL [9] и уровней редкоземельного иона (рис. 1). Очевидно, что туннелирование уменьшает количество редкоземельных ионов в двухвалентном состоянии, что и вызывает ослабление интенсивности фотолюминесценции (PL) RE^{2+} при стационарном ее возбуждении светом с энергией квантов, меньшей энергии оптической ионизации RE^{2+} в CaF₂. Таким образом, сверхрешетки CaF₂: RE–CdF₂ предоставляют уникальную возможность экспериментального изучения оптическими методами сугубо квантового эффекта подбарьерного спонтанного туннелирования электронов. В настоящей работе на основании анализа предшествующих работ [5–8] предложено более общее математическое описание физической модели эффекта и проведено качественное сравнение расчета с имеющимися экспериментальными данными.

1. Экспериментальные результаты и физическая модель эффекта

В работах [5–8] изучалась зависимость интенсивности люминесценции Eu^{2+} или Sm^{2+} в сверхрешетках $CaF_2:RE-CdF_2$ от времени при стационарном оптиче-

Рис. 1. Энергетическая схема зон проводимости и CaF₂-CdF₂-интерфейсов SL.

Рис. 2. Фотолюминесценция Eu^{2+} при стационарном возбуждении Ar-лазером с $\lambda = 361$ nm и плотностью возбуждения 0.5 W/cm² в SL со слоями CaF₂ толщиной 20, 40 и 60 ML. На вставке — те же зависимости PL для SL с толщинами слоев CaF₂ 60 и 40 ML в логарифмическом масштабе времени. T = 300 K [7].

ском возбуждении. Толщина легированного RE слоя флюорита d_{CaF_2} составляла от 10 до 60 монослоев (ML) (3–19 nm). SL с одинаковой толщиной слоев CaF₂ и CdF₂ и суммарной толщиной 100–350 nm были выращены методом молекулярно-лучевой эпитаксии [10], их структурные характеристики изучались с помощью рентгеновской дифрактометрии высокого разрешения [11].

При оптическом стационарном возбуждении таких SL наблюдалось существенное ослабление интенсивности люминесценции RE^{2+} по мере увеличения экспозиции образца. На рис. 2 показаны зависимости интенсивности люминесценции Eu^{2+} от времени в сверхрешетках $CaF_2 : Eu^{2+}-CdF_2$ [7]. В SL с $d_{CaF_2} = 60$ ML интенсивность люминесценции уменьшалась более чем в 2 раза в течение нескольких минут. С уменьшением толщины слоя флюорита эффект усиливался, и при $d_{CaF_2} = 20$ ML наблюдаемое уменьшение начальной интенсивности SL достигало 20–50 раз. В SL с $d_{CaF_2} = 10$ ML люминесценция практически отсутствовала. Примечательно, что этот эффект наблюдался в широком интервале температур: от комнатной до температуры жидкого гелия.

Были проанализированы возможные причины уменьшения интенсивности PL: туннелирование через гетерограницы, двухступенчатая фотоионизация RE^{2+} ; не исключалась также возможность возникновения физической деградации SL. Важным свидетельством в пользу туннельного механизма фотоионизации в SL является доказанный экспериментально однофотонный характер процесса ионизации RE^{2+} . В этом случае при увеличении (уменьшении) интенсивности возбуждения и одновременном растяжении (сжатии) в такое же число раз масштаба шкалы времени нормализованные зависимости интенсивности PL от времени не должны меняться для SL с фиксированной толщиной слоев CaF₂. Такое поведение PL для SL, легированных ионами Eu и Sm, показано на рис. 3, *a* и *b* соответственно.

Против объяснения затухания PL деградацией поверхности наряду с отсутствием визуально наблюдаемых дефектов на поверхности SL после ее облучения свидетельствуют также независимость эффекта от температуры и возможность выжигания спектральных провалов в бесфононной полосе спектра поглощения Eu²⁺ в таких SL [12,13]. Специфической чертой описанных выше экспериментов является необходимость использования нового участка на поверхности образца для проведения каждого последующего измерения, поскольку "память" о засветке экспонированный участок сохраняет по крайней мере в течение нескольких дней.

Теоретическое рассмотрение эффекта было проведено в [6] в рамках квантово-механической задачи подбарьерного туннелирования. Вероятность туннелирования электрона из возбужденного состояния иона RE^{2+} , находящегося на расстоянии *z* от ближайшего интерфейса, в зону проводимости CdF_2 определялась как вероятность

Рис. 3. Фотолюминесценция ионов европия [6] (*a*) и самария [8] (*b*) при различных интенсивностях стационарного возбуждения. *a*) Длина волны возбуждения $\lambda = 351$ nm; $I - I_{exc} = I_0$, $2 - I_{exc} = 0.2I_0$, 3 - начальный участок кривой *I*, растянутый по времени в 1/0.2 раз. *b*) Длина волны возбуждения $\lambda = 633$ nm; $I - I_{exc} = I_0$, $2 - I_{exc} = 0.55I_0$, $3 - I_{exc} = 0.18I_0$, 4 - начальный участок кривой 2, сжатый по времени в 1/0.55 раз, 5 - начальный участок кривой 3, сжатый по времени в 1/0.18 раз. T = 300 К.

туннелирования через прямоугольный потенциальный барьер шириной *z* в квазиклассическом приближении в рамках одномерной задачи

$$W_T = \frac{2\Delta E}{\pi\hbar} \exp\left(-\frac{z}{z_0}\right) = W_0 \exp\left(-\frac{z}{z_0}\right),$$
$$z_0 = \frac{\hbar}{\sqrt{8m^*\Delta E}}.$$
(1)

Здесь ΔE — высота барьера, равная энергии фотоионизации возбужденного уровня $4f^{n-1}5d$ RE²⁺, m^* эффективная масса электрона, \hbar — постоянная Планка. Оценка параметра z_0 , полученная по (1) в предположении $\Delta E = 1$ eV и $m^* = m_0$, дает значение $z_0 = 0.1$ nm. Поскольку для рассматриваемых SL толщина 1 ML составляет 0.315 nm, вероятность туннелирования меняется более чем в 20 раз при изменении z на 1 ML, и, следовательно, можно считать, что процесс ионизации протекает послойно. В результате туннелирования заряд редкоземельного иона меняется с +2 на +3, что приводит к уменьшению интенсивности PL RE²⁺, характер которого может быть моделирован путем решения системы простых уравнений баланса

$$\frac{dN_0}{dt} = -I_{\rm exc}\sigma N_0 + \frac{1}{\tau}N_1,$$
$$\frac{dN_1}{dt} = I_{\rm exc}\sigma N_0 - \left(W_T + \frac{1}{\tau}\right)N_1.$$
 (2)

Здесь N_0 и N_1 — заселенность основного $(4f^n)$ и возбужденного $(4f^{n-1}5d)$ состояний соответственно, I_{exc} — интенсивность возбуждающего света, σ — сечение фотовозбуждения перехода $4f^n \rightarrow 4f^{n-1}5d$ RE²⁺, τ — время жизни PL; начальные условия при t = 0: $N_0 = 1$, $N_1 = 0$.

Если предположить, что вероятность туннелирования достаточно мала, т.е. $W_T \ll I_{\rm exc}\sigma \ll 1/\tau$, то система (2) легко сводится к одному уравнению, описывающему изменение числа ионов RE²⁺ за счет туннельной ионизации возбужденных состояний. Решение этого уравнения можно представить в виде

$$N(\mathrm{RE}^{2+}) = N(\mathrm{RE}) \exp\{-tI_{\mathrm{exc}}\sigma\tau W_0 \exp(-z/z_0)\}, \quad (3)$$

где N(RE) — полная концентрация редкоземельных ионов, t — время, прошедшее после начала оптического возбуждения системы. Отсюда нетрудно получить, что продвижение фронта фотоионизации RE^{2+} от границы интерфейса в глубь слоя CaF_2 можно описать зависимостью

$$z(t) = z_0 \ln(t I_{\text{exc}} \sigma \tau W_0), \qquad (4)$$

которая показывает, что фронт ионизации удаляется от интерфейса пропорционально логарифму времени. Поскольку, как показано выше, фотоионизация проходит послойно, интенсивность люминесценции всего слоя пропорциональна толщине слоя с неионизированными ионами RE^{2+} ; ее изменение со временем можно записать в виде

$$I(t) = I_0 [1 - 2z(t)/d_{\text{CaF}_2}]$$

= $I_0 [1 - (2z_0/d_{\text{CaF}_2}) \ln(tI_{\text{exc}} \sigma \tau W_0)],$ (5)

где I_0 — интенсивность PL в начальный момент времени t = 0. Из (5) следует, что параметр туннелирования z_0 можно определить из наклона спада PL в логарифмическом масштабе времени, а именно:

$$z_0 = (d_{\text{CaF}_2}/2)[I(t_1)/I_0 - I(t_2)/I_0] / [\ln t_2 - \ln t_1].$$
 (6)

Оказалось, что экспериментальные кривые во многих случаях достаточно хорошо описываются логарифмической зависимостью (5) (см. вставку на рис. 2), что является важным подтверждением рассмотренной выше физической картины. Однако оценки характерной длины туннелирования с помощью (6) дают заметно бо́льшие значения [6,7], чем ожидаемые из (1). Кроме того, эта очень наглядная, но существенно упрощенная модель эффекта не описывает отсутствия люминесценции RE^{2+} в SL со слоями с $d_{\text{CaF}_2} = 10$ ML. Учитывая эти обстоятельства, мы провели численный анализ системы уравнений баланса (2) без использования предположений $W_T \ll 1/\tau$ и $W_T \ll I_{\text{ехс}}\sigma$, не вполне соответствующих реальным экспериментальным условиям.

Очевидно, что возникающий в процессе ионизации RE^{2+} пространственный заряд приводит к появлению электростатического потенциала и загибу зон. Поскольку ионизация проходит послойно, область пространственного заряда можно рассматривать как полностью обедненный RE^{2+} слой CaF_2 . Оценки величины загиба зон при концентрации $RE^{2+} N_0 = 0.1 \text{ mol.}\%$ показывают, что она составляет $\sim 0.1 \text{ eV}$. Поскольку такое изменение ΔE слабо меняет значения параметров туннелирования, мы не будем его учитывать при дальнейшем рассмотрении.

2. Решение системы уравнений баланса

Для решения систему уравнений баланса (2) более удобно представить в матричном виде

$$\frac{d\overline{\mathbf{N}}(t)}{dt} = A(z)\overline{\mathbf{N}}(t), \ A(z) = \begin{pmatrix} -I_{\text{exc}}\sigma & \frac{1}{\tau} \\ I_{\text{exc}}\sigma & -\frac{1}{\tau} - W(z) \end{pmatrix}.$$
(7)

Ее решение имеет вид

$$\overline{\mathbf{N}}(t) = \overline{\mathbf{C}^0} \exp(\lambda_0 t) + \overline{\mathbf{C}^1} \exp(\lambda_1 t), \qquad (8)$$

где λ_0, λ_1 — собственные числа матрицы $A(z), \overline{\mathbf{C}^{(0,1)}}$ — собственные векторы, соответствующие приведенным выше начальным условиям. Таким образом, точное решение системы (7) для заселенности возбужденных

состояний выражается зависимостью

$$N_{1}(z, t) = \frac{I_{\text{exc}}\sigma}{\operatorname{sp}AD} \left[\exp\left\{\frac{1+D}{2}t\operatorname{sp}A\right\} - \exp\left\{\frac{1-D}{2}t\operatorname{sp}A\right\} \right], \ D = \sqrt{1-\frac{4\det A}{\operatorname{sp}^{2}A}} \ . \tag{9}$$

Вид решения (9) упрощается при учете двух соответствующих экспериментальным условиям приближений: 1) $I_{exc}\sigma \ll 1/\tau$ позволяет ограничиться линейными членами разложения квадратных корней *D* в ряд Тейлора в экспонентах, заменить *D* единицей в знаменателе предэкспоненты и пренебречь $I_{exc}\sigma$ по сравнению с $1/\tau$ в sp*A*; 2) $t \gg \tau$ позволяет пренебречь первым экспоненциальным слагаемым в квадратных скобках. После таких упрощений и подстановки sp*A*(*z*) и det*A*(*z*) матрицы (7) в явном виде из выражения (9) получаем приближенное решение

$$N_1(z,t) \approx \frac{I_{\rm exc}\sigma\tau}{1+W_T\tau} \exp\left\{-\frac{I_{\rm exc}\sigma W_T\tau}{1+W_T\tau}t\right\}.$$
 (10)

Видно, что выражение (10) переходит в (3) при использовании приближения $W_T \ll 1/\tau$. Для последующих расчетов учтем в W_T возможность туннелирования электронов в обе стороны (достаточно актуальную для SL с толщиной слоев от 10 до 20 ML)

$$W_T(z, d_{\operatorname{CaF}_2}) = W_0 \left\{ \exp\left(\frac{-z}{z_0}\right) + \exp\left(\frac{d_{\operatorname{CaF}_2} - z}{z_0}\right) \right\}.$$
(11)

Зависимость интегральной интенсивности PL от времени может быть представлена в виде

$$I(t, d_{\text{CaF}_2}) = N(\text{RE})n \int_{0}^{d_{\text{CaF}_2}} N_1(z, d_{\text{CaF}_2}, t) dz, \qquad (12)$$

где N(RE) — концентрация ионов в слоях CaF₂ SL, *n* — количество слоев CaF₂: RE²⁺. Выражение (12) позволяет произвести численный расчет зависимостей интенсивности PL RE²⁺ от времени и начальных интенсивностей I_0 .

Для значений эффективных масс электронов в зоне проводимости CaF₂ и CdF₂ практически не существует надежных экспериментальных данных. Принято считать [14,15], что, поскольку зона проводимости фторидов формируется из *s*-орбиталей и энергетические расстояния между зонами велики (~ 10 eV), массы электронов в ней близки к массе свободного электронов в ней близки к массе свободного электрона. Поэтому для наших расчетов мы принимаем $m^* = m_0$. В работах [16,17] показано, что энергии оптической ионизации возбужденных состояний Eu²⁺ и Sm²⁺ в CaF₂ составляют около 1.5 eV. Однако из экспериментов по фотопроводимости в CaF₂:Eu²⁺ можно получить $\Delta E = 0.8$ eV [18].

Расчеты при этих значениях m^* и ΔE были выполнены нами с использованием программы МАТНСАD.

Рис. 4. Вычисленные значения начальных интенсивностей фотолюминесценции RE^{2+} в SL с различной толщиной слоев CaF₂ при варьировании параметра $\Delta E.\ m^* = m_0.$

Результаты расчетов І0, полученных при аппроксимации временных зависимостей (12) к t = 0 при $\Delta E = 0.3, 0.5, 0.8, 1.5$ и 2.0 eV, представлены на рис. 4. Можно видеть, что при ΔE менее 0.3 eV люминесценция ионов RE²⁺ не должна наблюдаться в SL с толщиной слоев CaF2: RE 10 и 20 ML. Однако в эксперименте для SL с $d_{\text{CaF}_2} = 20 \text{ ML}$ наблюдается весьма интенсивная люминесценция RE^{2+} . Таким образом, величина ΔE составляет более 0.3 eV. С другой стороны, для того чтобы результаты расчета соответствовали экспериментальному факту отсутствия PL в SL с $d_{CaF_2} = 10 \text{ ML}$, значение ΔE должно быть менее 1.5 eV. Пороговый характер представленных на рис. 4 зависимостей позволяет надеяться на получение более точного значения ΔE при наличии экспериментальных данных для SL с толщиной слоев между 10 и 20 ML.

Таким образом, нам представляется, что описанный выше эффект может проявляться и в других гетероструктурах с глубокими примесными центрами и большими скачками зон на гетерограницах, а также приводить к возникновению нового эффективного канала безызлучательной рекомбинации. Следует отметить, что даже более общее рассмотрение эффекта, представленное в настоящей работе, является весьма упрощенным. Волновая функция возбужденного состояния редкоземельного иона, являющаяся начальным состоянием туннельного перехода, имеет электронную конфигурацию $4f^n 5d$. Конечным состоянием перехода являются оболочка $4f^{n-1}$ и электрон в зоне проводимости CdF2. В процессе ионизации решетка вокруг редкоземельного иона сжимается, высвобождая энергию до 2 eV. В связи с этим более корректный теоретический анализ должен включать учет многофононных процессов релаксации решетки. С другой стороны, получение более полных экспериментальных данных о зависимости начальной интенсивности PL от толщины легированного слоя в области малых толщин (10-20 ML) дало бы возможность более точного определения параметров туннелирования.

стоящей работе эффекта происходит локальная запись оптической информации. Для ее считывания весьма привлекательными представляются данные, полученные в результате измерений отражения от структур в процессе фотоионизации [19]. Особый интерес представляет нахождение способа для стирания записанной информации.

Авторы весьма признательны И.Н. Яссиевич за вклад в создание первоначальной модели и неоднократные последующие обсуждения полученных результатов.

Список литературы

- [1] П.П. Феофилов. Опт. и спектр. 12. 531 (1962).
- [2] B. Welber, J. Chem. Phys. 42, 4264 (1965).
- [3] D.S. McClure. Proc. SPIE 2706, 315 (1996).
- [4] S.A. Basun, S.P. Feofilov, A.A. Kaplyanskii, U. Happek, J. Choi, K.W. Jang, R.S. Meltzer. Phys. Rev. B61, 12848 (2000).
- [5] S.V. Gastev, J.C. Alvarez, V.V. Vitvinsky, N.S. Sokolov, A.Yu. Khilko. Proc. SPIE 2706, 67 (1996).
- [6] N.S. Sokolov, S.V. Gastev, A.Yu. Khilko, S.M. Suturin, I.N. Yassievich, J.M. Langer, A. Kozanezcki. Phys. Rev. B59, R2525 (1999).
- [7] S.M. Suturin, S.A. Basun, S.V. Gastev, J.M. Langer, R.S. Meltzer, N.S. Sokolov. Appl. Surf. Sci. 162-163, 474 (2000).
- [8] С.В. Гастев, А.В. Крупин, Н.С. Соколов, С.М. Сутурин. Материалы совещ. "Нанофотоника-2000". Нижний Новгород (2000). С. 266.
- [9] A. Izumi, Y. Hirai, K. Tsutsui, N.S. Sokolov. Appl. Phys. Lett. 67, 2792 (1995).
- [10] A.Yu. Khilko, S.V. Gastev, R.N. Kvutt, M.V. Zamorvanskava, N.S. Sokolov. Appl. Surf. Sci. 123-124, 595 (1998).
- [11] Р.Н. Кютт, А.Ю. Хилько, Н.С. Соколов. ФТТ 40, 1563 (1998).
- [12] D.M. Boye, Y. Sun, R.S. Meltzer, S.P. Feofilov, N.S. Sokolov, A. Khilko, J.C. Alvarez. J. Lumin. 72-74, 290 (1997).
- [13] S.V. Gastev, A.Yu. Khilko, N.S. Sokolov, S.M. Suturin, R.S. Meltzer. Proc. of 6th Int. Symp. "Nanostructures: physics and technology". St. Petersburg, Russia (1998). P. 16.
- [14] In: Crystals with the fluorite structure / Ed. W. Hayes. Clarendon Press, Oxford (1974). Ch. 1.
- [15] A.M. Stoneham. Theory of defects in solids. Oxford (1975). Ch. 2.
- [16] J.F. Owen, P.B. Dorain, T. Kobayasi. J. Appl. Phys. 52, 3, 1216 (1981).
- [17] J.K. Lawson, S.A. Payne. J. Opt. Soc. Am. B8, 1404 (1991).
- [18] C. Pedrini, F. Rogemond, D.S. McClure. J. Appl. Phys. 59, 1196 (1986).
- [19] N.S. Sokolov, S.V. Gastev, A.Yu. Khilko, R.N. Kyutt, L.M. Sorokin, S.M. Suturin, D.B. Vcherashnii, P.D. Brown, C.J. Humphryes. Proc. of 10th Conf. on Semiconducting and Insultaing Materials (SIMC-X). Berkeley, California (1998). P. 305.