Электронная и кристаллическая структура изоморфных ZnP2 и CdP2

© К.Б. Алейникова, А.И. Козлов*, С.Г. Козлова*, В.В. Соболев**

Воронежский государственный университет, 394693 Воронеж, Россия *Международная лаборатория высокотемпературной сверхпроводимости и твердотельной электроники Академии наук Молдавии, MД2028 Кишинев, Молдавия **Удмуртский государственный университет, 426034 Ижевск, Россия

E-mail: kozlov@lises.asm.md

(Поступила в Редакцию 1 октября 2001 г.)

Проведены прецизионные исследования кристаллической структуры монокристаллов дифосфида цинка и дифосфида кадмия. Рассчитан полный комплекс фундаментальных оптических функций обоих кристаллов в области 2.2–5.3 eV. Диэлектрическая функция впервые разложена на компоненты. Установлены три основных параметра осцилляторов. Сопоставлены электронные структуры ZnP₂ и CdP₂.

Анизотропные кристаллы ZnP_2 и CdP_2 давно изучаются благодаря своим необычным свойствам и возможностям применения в технике [1–3]. Они характеризуются большой величиной ширины запрещенной зоны E_g , механической и химической стойкостью, высокой оптической активностью [2,3]. Монокристаллы ZnP_2 и CdP_2 кристаллизуются в решетке с пространственной группой $P4_12_12 = D_4^4$. Для ZnP_2 была найдена энантиоморфная форма $P4_32_12 = D_4^8$. В элементарной ячейке восемь формульных единиц. Параметры решетки (a, c) приведены в [4–6]. В [7] показано, что основной фрагмент структуры дифосфидов цинка и кадмия — спектральные цепи фосфора, ориентированные вдоль направлений [100] и [010].

Зона Бриллюэна для этих тетрагональных кристаллов представляет собой прямоугольный параллелепипед. Особенности симметрии зон, законы дисперсии и правила отбора приведены в [8]. Расчеты зонной структуры методом псевдопотенциала описаны в [9-12]. Спин-орбитальное взаимодействие не учитывалось изза малой величины ($\Delta E_{s.o.} < 0.05 \, \text{eV}$). Топология зон вблизи E_g практически не меняется при разных вариантах выбора псевдопотенциала. В оптимальном случае величина E_g оказалась равной 1.58 eV (ZnP₂) и 0.81 eV (CdP₂). Вершина валентной зоны в ZnP₂ расположена в точке Г, край поглощения определяется прямыми запрещенными переходами. В CdP2 вершина валентной зоны смещается в точку Z, поэтому реализуются непрямые переходы. В работе [13] расчеты зонной структуры CdP₂ выполнены с помощью метода присоединенных плоских волн. Оказалось, что точки Г и Z сходны по энергетическому строению.

По данным [14] краевое поглощение в дифосфидах цинка и кадмия определяется непрямыми переходами, близко к ним расположены прямые переходы: $E_{gi} = 1.97 \text{ eV}, E_{gd} = 2.30 \text{ eV}$ для $\text{ZnP}_2, E_{gi} = 1.70 \text{ eV},$ $E_{gd} = 2.11 \text{ eV}$ для CdP_2 . Спектры отражения ZnP_2 в поляризованном свете были исследованы в [15] при 77 и 300 К, спектры отражения CdP_2 были измерены только для случая Е \perp с [8]. Эти спектры отличались сильным спадом отражения в области ближнего ультрафиолета из-за несовершенства образцов и методики измерений. Спектры отражения и термоотражения дифосфида кадмия для обеих поляризаций были изучены в [16], а спектры электроотражения ZnP2 исследовались в [17], но только при комнатной температуре. Наиболее достоверные результаты получены в работах [12,18]. Прецизионная методика позволила измерять величину коэффициента отражения R с точностью до 0.5% и воспроизводимостью $\approx 0.03\%$. Измерения проводились в области энергий 2-5 eV при 80 и 293 K для двух поляризаций света ($\mathbf{E} \perp \mathbf{c}$ и $\mathbf{E} \parallel \mathbf{c}$). Образцы находились в вакууме, для исключения осаждения паров воды и масла использовались азотные ловушки. Анализ экспериментальных данных в [12] был выполнен для максимумов интегральных спектров отражения R, а не спектров поглощения или диэлектрической функции, т.е. не учитывались точные энергии и интенсивности полного набора оптических переходов. Это приводило к возможности многовариантной трактовки природы наблюдаемых пиков отражения. Для решения трудной задачи построения корректной зонной модели любого кристалла эффективным является исследование не одной из оптических функций (отражение), а полного их комплекса [19,20].

В настоящей работе приводятся результаты прецизионных исследований оптических спектров и атомной структуры, позволяющие получить более точные данные о геометрии химических связей и электронной структуре изоморфных кристаллов дифосфидов цинка и кадмия.

1. Рентгеноструктурные исследования

Экспериментальные данные для расчета кристаллических структур были получены на автоматическом четырехкружном дифрактометре "Hilger & Watts" (λ Мо $K\alpha$ -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование).

Таблица 1. Длины связей (в Å) в кристаллах ZnP_2 и CdP_2

ZnP ₂		CdP ₂		
$Zn-P_1$ $Zn-P_1$ $Zn-P_2$ $Zn-P_2$ P_1-P_2	2.3878 2.3899 2.4063 2.3555 2.1658	$\begin{array}{c} Cd-P_1\\ Cd-P_1\\ Cd-P_2\\ Cd-P_2\\ P_1-P_2\end{array}$	2.579 2.583 2.581 2.529 2.171	
$P_1 - P_2$	2.206	$P_1 - P_2$	2.203	

Таблица 2. Валентные углы (в градусах) в ZnP₂ и CdP₂

Znl	P ₂	CdP_2		
$P_1 - P_2 - Zn$	109.07	P ₁ -P ₂ -Cd	110.10	
$P_1 - P_2 - Zn$	104.48	$P_1 - P_2 - Cd$	103.35	
$P_1 - P_2 - P_1$	106.89	$P_1 - P_2 - P_1$	109.82	
$Zn-P_2-Zn$	115.8	Cd-P ₂ -Cd	110.18	
$Zn-P_2-P_1$	113.85	$Cd-P_2-P_1$	115.66	
$Zn-P_2-P_1$	106.01	$Cd-P_2-P_1$	106.97	
P_2 – Zn – P_2	124.167	P_2 -Cd- P_2	125.06	
P_2 – Zn – P_1	112.54	P_2 -Cd- P_1	114.8	
P_2 – Zn – P_1	109.24	P_2 -Cd- P_1	110.5	
P_2 – Zn – P_1	105.06	P_2 -Cd- P_1	104.26	
P_2 – Zn – P_1	103.35	P_2 -Cd- P_1	100.21	
P_1 – Zn – P_1	99.389	P_1 – Cd – P_1	97.83	
$Zn-P_1-Zn$	108.35	Cd-P ₁ -Cd	107.26	
$Zn-P_1-P_2$	112.21	$Cd-P_1-P_2$	114.11	
$Zn-P_1-P_2$	111.55	$Cd-P_1-P_2$	110.68	
$Zn-P_1-P_2$	110.27	$Cd-P_1-P_2$	110.47	
$Zn-P_1-P_2$	105.06	$Cd-P_1-P_2$	103.00	
$P_2 - P_1 - P_2$	109.17	$P_2 - P_1 - P_2$	110.68	

Постоянные решетки для кристаллов пространственной группы $P4_12_12$ оказались равными 5.2768 (7) Å (a = b) и 19.753 (3) Å (c) для CdP₂; 5.0586 (7) Å и 18.506 (4) Å для ZnP₂ при 293 К. Структура ZnP₂ была уточнена в двух энантиоморфных пространственных группах. Для $P4_12_12$ фактор расходимости $\approx 3\%$ (число используемых отражений ≈ 2000). Форма $P4_32_12$ имеет несколько отличающиеся параметры решетки. Различить эти две структуры можно по вращению плоскости поляризации света, направленного на оси с. Структура CdP₂ была уточнена в группе $P4_12_12$ (фактор расходимости $\approx 3.4\%$, число используемых отражений ≈ 1000). Поэтому результаты приведены только для этой группы (табл. 1,2).

У обоих кристаллов по три независимых атома: P1, P2 и Zn (Cd). Они занимают три эквивалентные восьмикратные позиции. Цинк окружен четырьмя атомами фосфора (по два каждого сорта), а каждый атом фосфора связан с двумя атомами цинка и двумя атомами фосфора. После уточнения кристаллических структур дифосфидов цинка и кадмия связи P–P в фосфорных цепях стали практически идентичными связям P–P в черном кристаллическом фосфоре. Межатомные расстояния Zn-P, Cd-P несколько меньше суммы их тетраэдрических радиусов [21], что, возможно, связано с наличием ионной составляющей связи. Наименьший валентный угол для ZnP₂ 99.39° составляет для CdP₂ — 97.83°; наибольший угол соответственно равен 124.17 и 125.06°. Между другими углами тоже хорошая корреляция. Связи P-P в обоих кристаллах очень близки (разница всего в 0.003–0.005 Å). До прецизионных измерений связи P-P в CdP₂ полагались равными 2.157 и 2.227 Å, т.е. после уточнения их величины существенно изменились.

2. Расчеты оптических функций

На основе данных работ [12,18] при помощи соотношений Крамерса-Кронига [19] выполнены расчеты оптических функций для обоих кристаллов в области 2.2–5.3 eV в поляризованном свете. Данные в области прозрачности и в области 5–12 eV, необходимые для корректных вычислений, взяты из работ других авторов. Основные особенности функций при 80 и 293 K совпадают, однако при комнатной температуре все структуры выражены слабее, вплоть до исчезновения некоторых из них.

Были сопоставлены следующие функции: коэффициент отражения R; мнимая и действительная части диэлектрической функции ε_2 и ε_1 ; коэффициент поглощения μ ; показатели преломления n и поглощения k; интегральная функция связанной плотности состояний, умноженная на вероятность переходов, равная с точностью до постоянного множителя $\varepsilon_2 E^2$; эффективное число валентных электронов $n_{\rm ef}$, участвующих в переходах при данной энергии; эффективная диэлектрическая постоянная $\varepsilon_{\rm ef}$; дифференциальные (электрооптические) функции α и β ; фаза отраженного света θ , а также функции объемных и поверхностных плазмонов $-\text{Im}(\varepsilon)^{-1}$ и $-\text{Im}(\varepsilon+1)^{-1}$. Все эти функции взаимосвязаны, однако каждая имеет и самостоятельное значение.

Особенности функций R подробно описаны в [8,12]. Форма функций n, ε_1 коррелирует и повторяет форму *R* в длинноволновой области, а затем наблюдается сильный спад, на фоне которого отчетливо видны только самые интенсивные структуры отражения. Функции k, ε_2 и в меньшей степени $\varepsilon_2 E^2$ и μ в основном повторяют спектр отражения, особенно в случае $\mathbf{E} \perp \mathbf{c}$, однако распределение интенсивностей несколько другое. Коэффициент поглощения достигает при 5 eV значения $0.9 \cdot 10^{6} \text{ cm}^{-1}$ (ZnP₂) и $1.1 \cdot 10^{6} \text{ cm}^{-1}$ (CdP₂). Функции объемных и поверхностных плазмонов совпадают по форме, хотя несколько отличаются по абсолютной величине. В них проявляются все пики отражения, за исключением самых длинноволновых. Функции nef, Eef монотонно возрастают, не достигая в рассматриваемой области энергии насыщения. Дифференциальная функция α монотонно убывает, несколько напоминая зависимость для *n*. Более сложная функция β вблизи E_g повторяет форму кривой *R*, а при hv > 3.5 eV антисим-метрична ей.

На рис. 1–4 приведены спектральные зависимости функций ε_1 и ε_2 при 80 К для обоих кристаллов при двух поляризациях света (**E** \perp **c**, **E** \parallel **c**). Четко проявляется оптическая анизотропия исследуемых кристаллов. Ясно видны отличия в ходе кривых мнимой и действительной компонент диэлектрической проницаемости дифосфидов цинка и кадмия для разных поляризаций света. Абсолютные величины ε_1 и ε_2 меньше в ZnP₂, поскольку отражение в CdP₂ почти во всех областях энергии больше.

В то же время при сопоставлении рис. 1, 3 и 2, 4, учитывая разницу в величинах E_g , можно обнаружить очень много общего в представленных зависимостях ε_1 и ε_2 от энергии падающего света для двух разных кристаллов, особенно при $\mathbf{E} \perp \mathbf{c}$.

Рис. 1. Оптические функции ε_1 (*1*) и ε_2 (*2*) кристалла ZnP_2 для $E \parallel c$ и 80 К.

Рис. 2. Оптические функции ε_1 (1) и ε_2 (2) кристалла ZnP₂ для $\mathbf{E} \perp \mathbf{c}$ и 80 K.

Рис. 3. Оптические функции ε_1 (*1*) (*1*) и ε_2 (*2*) кристалла CdP₂ для **E** || **с** и 80 К.

Рис. 4. Оптические функции ε_1 (1) и ε_2 (2) кристалла CdP₂ для $\mathbf{E} \perp \mathbf{c}$ и 80 K.

Параметры оптических переходов ZnP₂ и CdP₂

Полосы переходов твердых тел, как правило, сильно перекрываются; некоторые из них могут структурно не проявляться в интегральной кривой. Поэтому с помощью метода диаграмм Арганда [20] выполнено разложение спектров ε_2 на парциальные части, обусловленные отдельными группами переходов с близкими энергиями. Для этого на интегральных кривых $\varepsilon_2 = f(\varepsilon_1)$ выбирали участки, хорошо описываемые полуокружностями. По ним строили парциальные функции и определяли остатки обеих функций. Процесс моделировали с помощью ЭВМ и повторяли до тех пор, пока на остатках кривых Арганда были еще участки, хорошо представляемые частями окружности. В результате были определены основные параметры элементарных осцилляторов: E_i — положение максимума полосы, H_i — ее полуширина,

Таблица 3. Параметры E_i , H_i (в eV), f_i осцилляторов O_i дифосфида цинка

O_i	Е с, 80 К		$\mathbf{E} \perp \mathbf{c}, 80 \mathrm{K}$			
	E_i	H_i	f_i	E_i	H_i	f_i
O_1	2.81	0.15	0.006	2.76	0.26	0.071
O_2	3.06	0.15	0.048	3.02	0.27	0.064
O_3	3.20	0.18	0.038	3.27	0.27	0.049
O_4	3.36	0.24	0.097	3.41	0.29	0.089
O_5	3.54	0.30	0.086	3.61	0.31	0.100
O_6	3.74	0.34	0.133	3.72	0.31	0.160
O_7	3.95	0.33	0.217	3.95	0.32	0.232
O_8	4.21	0.36	0.273	4.20	0.33	0.238
O_9	4.38	0.33	0.129	4.44	0.34	0.209
O_{10}	4.59	0.37	0.260	4.66	0.41	0.497
O_{11}	4.87	0.39	0.249	4.95	0.42	0.342
<i>O</i> ₁₂	5.09	0.40	0.141	5.10	0.43	0.288

Таблица 4. Параметры E_i , H_i (в eV), f_i осцилляторов O_i дифосфида кадмия

O_i	Е с, 80 К		$\mathbf{E} \perp \mathbf{c}, 80 \mathrm{K}$			
	E_i	H_i	f_i	E_i	H_i	f_i
O_1	2.47	0.24	0.018	2.57	0.14	0.071
O_2	2.75	0.23	0.045	2.79	0.19	0.025
O_3	2.91	0.23	0.081	2.89	0.22	0.056
O_4	3.05	0.24	0.064	3.06	0.26	0.105
O_5	3.28	0.34	0.206	3.33	0.32	0.307
O_6	3.44	0.31	0.048	3.41	0.26	0.076
O_7	3.59	0.35	0.224	3.62	0.38	0.453
O_8	3.92	0.34	0.218	3.90	0.36	0.473
O_9	4.12	0.29	0.092	4.13	0.29	0.249
O_{10}	4.28	0.39	0.299	4.35	0.42	0.942
O_{11}	4.59	0.37	0.351	4.62	0.34	0.481
O_{12}	4.89	0.36	0.342	4.92	0.40	0.572

 f_i — сила осциллятора, которая определяет вероятность перехода. Полученные результаты приведены в табл. 3, 4.

Согласно нашим расчетам, интегральный спектр ε_2 кристаллов ZnP₂ и CdP₂ в области 2.2–5.3 eV можно воспроизвести с помощью двенадцати лоренцевских осцилляторов (для каждой поляризации), в то время как в спектрах *R* при низких температурах проявляются только 9–10 структур. Интересно отметить отсутствие интенсивных переходов с $f_i > 1$, значительно меньшие значения f_i для $\mathbf{E} \parallel \mathbf{c}$, а также слабое изменение полуширины осцилляторов.

Можно выделить две группы полос. В первую входят полностью поляризованные полосы (переходы разрешены только для одной поляризации), во вторую — полосы, проявляющиеся в разных поляризациях с близкими E_i , но разными f_i . Выделенные нами группы эффективных осцилляторов обусловлены межзонными

переходами (или метастабильными экситонами) с близкими энергиями и силами осцилляторов.

4. Обсуждение результатов

В работе [8] анализировались особенности электронной структуры обоих кристаллов на основе положения только шести пиков отражения при Е \perp с, в [12] учитывались положения девятнадцати особенностей в спектрах отражения (обе поляризации). На рис. 5 представлен график соответствия величин полученных нами энергий максимумов ε_2 предполагаемой одной природы. Анализируется положение (и интенсивность) сорока восьми переходов для обоих кристаллов. Переходы, соединенные прямыми линиями, имеют одинаковое или весьма близкое происхождение. Почти все структуры в ZnP₂ сдвинуты примерно на 0.3 eV в область больших энергий. Однако для некоторых пар осцилляторов сдвиг может быть существенно меньше — примерно 0.2 eV для O_1 и O_2 (**E** \perp **c**), O_{12} (**E** \parallel **c**) — или даже достигать $0.38 \text{ eV} (O_3)$ для **E** \perp **с**. Отсутствие экситонных структур свидетельствует в пользу того, что ширина запрещенной зоны определяется непрямыми переходами. Вблизи Е_е чередование максимумов ε_2 нарушается. Таким образом, сходство оптических функций ZnP2, CdP2, а так-

Рис. 5. График соответствия максимумов компонент разложения мнимой части диэлектрической функции ε_2 кристаллов ZnP₂ и CdP₂. *1* — **E** || **c**, 2 — **E** \perp **c**.

же сходство в структуре кристаллических решеток и природе химических связей указывают на аналогию в строении их энергетических зон, что подтверждают расчеты [9-12]. Однако электронный спектр каждого соединения имеет и специфические особенности, которые упрощенные зонные расчеты учесть не могут. Поскольку аномалии возникают вблизи Eg, можно предположить, что топология верхних валентных зон или нижних зон проводимости в некоторых точках (направлениях) зоны Бриллюэна обоих кристаллов может отличаться. Общепризнано, что для более корректного построения зон кристаллов необходимо учитывать данные оптических спектров. Можно надеяться, что использование впервые полученных в настоящей работе результатов поможет устанавливать наиболее точный характер электронной структуры анизотропных соединений ZnP₂ и CdP₂.

Список литературы

- В.Б. Лазарев, В.Я. Шевченко, Л.Х. Гринберг, В.В. Соболев. Полупроводниковые соединения группы А^{II}B^V. Наука, М. (1976). 256 с.
- [2] Химия и технология фосфидов и фосфорсодежащих сплавов. Сб. статей. Изд-во ИПМ АН УССР, Киев (1979). 214 с.
- [3] Physics of non-tetrahedrally bonded elements and binary compouds / Ed. O. Madelung. Springer-Verlag, Berlin–Heidelberg–N. Y.–Tokyo (1983).
- [4] J.C. White. Acta Cryst. 18, 217 (1965).
- [5] J. Horn. Bul. Acad. Pol. Sci. Ser. Sci. Chim. 17, 2, 69 (1969).
- [6] A.U. Sheleg, A.A. Kutas, N.P. Tekhanovich. Phys. Stat. Sol. (a) 58, K179 (1980).
- [7] K.B. Aleinikova, N.S. Rabotkina, A.V. Arsenov, E.I. Zavalishin. In: Proc. of the 1st Int. Symp. on the Physics and Chemistry of II–V Compounds. Mogilany (1980). P. 39.
- [8] V.V. Sobolev, N.N. Syrbu, T.N. Sushkevich. Phys. Stat. Sol. (b)
 43, 1, 73 (1971).
- [9] Ю.И. Полыгалов, А.С. Поплавной, В.Е. Тупицын. Изв. вузов. физика 3, 123 (1981).
- [10] М.А. Бунин, А.И. Гусатинский, В.И. Минин, Ю.И. Полыгалов, А.С. Поплавной, В.Е. Тупицын. ФТП 15, 8, 1617 (1981).
- [11] В.Е. Тупицын, Ю.И. Полыгалов, А.С. Поплавной. ФТП 15, 12, 2414 (1981).
- [12] V.V. Sobolev, A.I. Kozlov, Iu.I. Polygalov, V.E. Tupitsyn, A.S. Poplavnoi. Phys. Stat. Sol. (b) 154, 377 (1989).
- [13] Л.А. Лезняк, Весці Акадэміі Навук БСС 4, 91 (1985).
- [14] V.V. Sobolev, N.N. Syrbu. Phys. Stat. Sol (b) 43, 1, K87 (1971).
- [15] V.V. Sobolev, N.N. Syrbu, Ya.A. Ugai. Phys. Stat. Sol. 31, K51 (1969).
- [16] Г. Амбразявичус, Г. Бабонас, Н.С. Корец, С. Марцинкявичус. ЛФЖ 23, 3, 59 (1983).
- [17] А.И. Евстигнеев, О.В. Снитко, В.Г. Федотов, А.Н. Красико, П.А. Генцар. УФЖ **30**, *3*, 471 (1985).
- [18] В.В. Соболев, А.И. Козлов, И.И. Тычина, Э.М. Смоляренко, Н.С. Корец, П.А. Романык. ЖПС **38**, *3*, 504 (1983).
- [19] В.В. Соболев. Собственные энергетические уровни твердых тел группы А^{IV}. Штиинца, Кишинев (1978). 208 с.

- [20] В.В. Соболев, В.В. Немошкаленко. Методы вычислительной физики в теории твердого тела. Электронная структура полупроводников. Наук. думка, Киев (1988). 424 с.
- [21] Б.Ф. Ормонт. Введение в физическую химию и кристаллохимию полупроводников. Высш. шк., М. (1982). 528 с.