Фононные спектры La-содержащих твердых растворов на основе Bi₂Sr₂CaCu₂O₈, измеренные методом неупругого рассеяния нейтронов

© А.В. Кнотько, В.И. Путляев, С.И. Морозов*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия * ГНЦ РФ "Физико-энергетический институт" им. акад. Лейпунского, 249020 Обнинск, Калужская обл., Россия

E-mail: knotko@inorg.chem.msu.ru

(Поступила в Редакцию 14 июня 2001 г. В окончательной редакции 13 сентября 2001 г.)

Методом неупругого рассеяния нейтронов на спектрометре прямой геометрии ДИН-2ПИ исследованы фононные спектры твердых растворов $Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$ (x = y = 0; x = 0, y = 0.25; x = 0.25, y = 0; x = 0, y = 0.5). Из полнопрофильного анализа ренттенодифракционных данных получена оценка распределения атомов щелочноземельных элементов (ЩЗЭ) и La по позициям Ca и Sr структуры $Bi_2Sr_2CaCu_2O_8$. Проведено соотнесение основных особенностей фононного спектра преимущественным колебаниям определенных атомов. В частности, сопоставление рентгеноструктурных и спектроскопических данных указывает на одномодовый характер поведения особенности, отвечающей колебаниям катионов в кристаллографических позициях атомов Sr исходной структуры 2212 (около 11 meV). Замещение ЩЗЭ на La приводит к модификации высокочастотной (> 40 meV) части фононного спектра (отвечающей колебаниям кислорода в слоях SrO и CuO₂ структуры $Bi_2Sr_2CaCu_2O_8$) и изменениям граничных частот спектров твердых растворов различного содержания. Сравнение результатов, полученных в настоящей работе, с ранее исследованными спектрами соединения 2212 при замещении Ca на Nd указывает на связь формы и интенсивности высокочастотных колебаний спектров исследуемых образцов со средним зарядом катионов в слоя SrO структуры $Bi_2Sr_2CaCu_2O_8$.

Гетеровалентное катионное замещение в различные кристаллографические позиции играет важную роль в модификации функциональных свойств высокотемпературных сверхпроводников (Т_с, J_c, проводимость при комнатной температуре и т.д.). Сверхпроводящие материалы на основе Bi₂Sr₂CaCu₂O₈ (Bi2212) перспективны для практического применения в виде кабелей и лент. Значительный интерес при этом представляют твердые растворы замещения щелочноземельных элементов на редкоземельные в структуре Bi2212. Данное замещение может проводиться в широком концентрационном интервале и при некоторой степени замещения приводит к переходу металл-полупроводник, вызываемому, уменьшением концентрации носителей заряда (дырок) в слоях CuO₂ при гетеровалентном замещении [1,2]. В связи с важностью электрон-фононных взаимодействий для механизма сверхпроводимости большое значение имеет определение влияние гетеровалентного замещения на динамику кристаллической решетки сверхпроводника. Данной проблеме посвящен ряд работ [3,4]. При этом авторы [4] рассматривают одновременное влияние на динамику решетки двух факторов — изменения концентрации носителей заряда и внутреннего напряжения в кристалле (так называемого "внутреннего давления"), вызванного различием ионных радиусов Ca²⁺ и Y³⁺ (1.26 и 1.10 Å по Шеннону и Прюитту [5]).

В нашей предыдущей работе [6] с целью разделения этих эффектов были исследованы твердые растворы с замещением Са на Nd, имеющие ионный радиус больший, чем у Y, и практически совпадающий с радиусом замещаемого ЩЗЭ (1.25 Å для Nd³⁺). По результатам сравнения полученных спектров с представленными в [3] был сделан вывод о незначительном влиянии "внутреннего давления" на колебания кислорода в слоях CuO₂. Вместе с тем наличие магнитного момента у иона Nd³⁺ может приводить к дополнительному вкладу в спектр неупруго рассеянных нейтронов (HPH), что оставляет некоторую неоднозначность при интерпретации экспериментальных результатов. В настоящей работе аналогичная задача разделения вкладов "внутреннего давления" и зарядового состояния катионов на изменение динамики атомов кислорода решалась путем замены ЩЗЭ на немагнитный ион La³⁺, близкий к Nd по массе и радиусу и с изоструктурным строением внешних электронных оболочек.

Представляет также интерес вопрос о влиянии кристаллографической позиции замещаемого катиона на спектр высокочастотных колебаний кристалла. Поэтому были исследованы твердые растворы 2212 как с замещением Ca^{2+} на La^{3+} , так и с замещением Sr^{2+} на La^{3+} (ионные радиусы Ca^{2+} , Sr^{2+} и La^{3+} равны 1.26, 1.40 и 1.30 Å соответственно).

1. Постановка эксперимента и обработка результатов

Образцы $Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$ (x = 0, y = 0;x = 0.25, y = 0; x = 0, y = 0.25; x = 0, y = 0.5) были синтезированы из нитратно-оксинитратных смесей, по-

Таблица 1. Параметры орторомбической элементарной ячейки твердых растворов $Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$ (Å)

Состав	$\begin{aligned} x &= 0, \\ y &= 0 \end{aligned}$	x = 0.25, y = 0	x = 0, y = 0.25	x = 0, $y = 0.5$
a	5.426(3)	5.432(3)	5.437(4)	5.441(3)
b	5.426(3)	5.432(3)	5.437(4)	5.441(3)
c	30.91(3)	30.76(3)	30.73(4)	30.53(2)

Таблица 2. Параметры функций Гаусса (1), суперпозиция которых описывает экспериментально полученные значения $G(\varepsilon)$ твердых растворов Bi₂Sr_{2-v}Ca_{1-x}La_{x+v}Cu₂O_{8+ δ}

Номер функции			2	3	4	5	6	7
x = 0, y = 0	$arepsilon_c (\mathrm{meV}) \ w(\mathrm{meV}) \ A(\mathrm{a.u.})$	5.7 2.0 5.8	11 6.0 57	19 6.0 120	25 7.4 210	35 10 330	48 8.9 70	67 23 220
x = 0, y = 0.25	$arepsilon_c(\mathrm{meV})\ w(\mathrm{meV})\ A(\mathrm{a.u.})$	5.9 2.1 5.0	11 6.2 53	21 8.3 220	27 4.9 82	35 8.4 290	48 8.8 88	64 23 240
x = 0, y = 0.5	$egin{aligned} & \varepsilon_c(\mathrm{meV}) \ w(\mathrm{meV}) \ A(\mathrm{a.u.}) \end{aligned}$	6.4 2.7 13	11 4.3 39	21 8.5 220	27 4.7 86	36 8.0 300	47 8.3 86	63 23 240
x = 0.25, y = 0	$egin{aligned} & arepsilon_c ({ m meV}) \ & w ({ m meV}) \ & A ({ m a.u.}) \end{aligned}$	6.2 2.5 8.5	11 4.9 42	19 6.0 120	25 6.0 170	35 10 350	50 11 100	67 25 220

лученных растворением Bi_2O_3 , $SrCO_3$, CuO - ЧДА, $CaCO_3$, $La_2O_3 - OCЧ$ в 20% азотной кислоте с последующим упариванием полученного раствора. Синтез образцов проводился аналогично описанному в [6] синтезу Nd-содержащих твердых растворов на основе Bi2212 и включал разложение солевой смеси при 750°C и несколько последующих стадий отжига при температуре 860°C по 24 h с промежуточным перетиранием. Все отжиги проводились на воздухе.

Рентгенофазовый анализ синтезированных образцов, проведенный с использованием дифрактометра ДРОН-3М (Си $K_{\alpha ave}$ излучение, для расчета параметров элементарной ячейки в качестве внутреннего стандарта использовался кремний), показал, что их состав соответствует твердым растворам на основе Bi₂Sr₂CaCu₂O₈. Уточненные по методу наименьших квадратов параметры элементарной ячейки приведены в табл. 1. Из приведенных данных видно монотонное изменение параметров, подтверждающее образование твердых растворов.

Эксперименты по неупругому рассеянию нейтронов проводились на спектрометре прямой геометрии ДИН-2ПИ, установленном на реакторе ИБР-2 (ОИЯИ, г. Дубна) [7]. Спектры регистрировались по времени пролета в режиме приобретения энергии E с начальной энергией нейтрона $E_0 = 8.15$ meV при комнатной температуре в диапазоне углов рассеяния $42-134^\circ$ (на детекторах, расположенных при меньших углах, наблюдался значительный поток нейтронов с энергиями >100 meV, соответствующий тепловому фону). Разрешение спектрометра составляло $\Delta E/E \approx 5-8\%$ в области передач энергии $\varepsilon = E - E_0 = 0-100$ meV, при этом переданный нейтрону импульс лежит в пределах Q = 1.8-4.2 Å⁻¹ для $\varepsilon = 6$ meV и Q = 5.9-8.7 Å⁻¹ для $\varepsilon = 100$ meV. Нормировка спектров проводилась по упругому пику ванадия.

Обработка спектров велась в некогерентном приближении [8] с учетом многофононного рассеяния [9]. После введения обычных поправок на эффективность детекторов и ослабление потока нейтронов образцом спектры HPH обрабатывались до уровня функции $G(\varepsilon)$ — спектра частот кристаллической решетки, взвешенного на множителе $\sum \exp(-2W_i)c_i\sigma_i\langle |\xi_i(\varepsilon)|^2\rangle/m_i$, где c_i, σ_i, m_i и $\langle |\xi_i(\varepsilon)|^2 \rangle$ — концентрация, сечение рассеяния, масса и средний квадрат векторов поляризации *i*-го атома, а $\exp(-2W_i)$ — фактор Дебая–Валлера (так называемая нейтронно-взвешенная спектральная плотность колебательных состояний).

Усредненные по измерениям на всех детекторах в диапазоне углов рассеяния $42^{\circ}-134^{\circ}$ нейтронновзвешенные спектры частот для исследуемых образцов приведены на рис. 1. Для численной оценки различий в спектрах плотности состояний фононов в образцах с различным содержанием La низкочастотная ($\varepsilon < 50 \text{ meV}$) часть данных спектров была аппроксимирована суперпозицией функций Гаусса

$$I = A/\left(w(\pi/2)^{1/2}\right)\exp\left(-2(\varepsilon-\varepsilon_c)/w\right)^2, \qquad (1)$$

где I — интенсивность, ε — энергия, A, w, ε_c — параметры. Вычитанием из спектра $G(\varepsilon)$ суммы функций, описывающих низкочастотную часть, была выделена часть спектра, отвечающая, согласно литературным данным, колебаниям кислорода в слоях CuO₂ и SrO (рис. 2),

Рис. 1. Спектры $G(\varepsilon)$ твердых растворов $Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$ (I - x = 0, y = 0; 2 - x = 0.25, y = 0; 3 - x = 0, y = 0.25; 4 - x = 0, y = 0.5). Штриховыми линиями (I)–(T) показаны функции Гаусса, аппроксимирующие спектр $G(\varepsilon)$ и отвечающие колебаниям отдельных групп атомов.

которая также была аппроксимирована функциями (1). Параметры функций Гаусса для всех образцов приведены в табл. 2, а графики данных функций, описывающих спектр $G(\varepsilon)$ образца Bi₂Sr₂CaCu₂O₈, приведены на рис. 1.

2. Обсуждение результатов

Соотнесение той или иной части полученных спектров с колебаниями различных атомов проводилось, как и в работе [6], сравнением данных эксперимента с результатами [3,10–12] для твердых растворов $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_{8+\delta}$ и незамещенного $Bi_2Sr_2Ca_{2}O_8$. Выводы из данного соотнесения также были аналогичны сделанным в [6], а именно: пик (1) относится к колебаниям атомов Ві, пик (2) — к колебаниям Sr, пики (3) и (4) — к колебаниям Сu и катионов в слое Ca, пик (5) является результатом наложения колебаний Cu и нескольких типов колебаний атомов кислорода, пик (6) соответствует колебаниям кислорода в слое SrO, а пик (7) — колебаниям кислорода в слое CuO₂.

На рис. 1 и 2 виден небольшой сдвиг спектра колебаний кислорода в область больших частот при замещении Са на La. При замещении Sr на La этот эффект практически отсутствует.

Ранее было показано (см. [6]), что наблюдаемый при изменении содержания Nd сдвиг положения пика (2) хорошо согласуется с оцененными в [13] распределениями атомов редкоземельных элементов (РЗЭ) и ЩЗЭ по кристаллографическим позициям. Аналогичная оценка была проделана в настоящей работе для La-содержащих твердых растворов на основе Bi2212. Расчет проводился методом полнопрофильного анализа дифрактограмм (метод Ритвельда) по рентгенодифракционным данным. Для расчета использовалась программа RIETAN [14]. Полученные результаты приведены в табл. 3.

Из-за близости атомных факторов рассеяния для Sr и системы 0.49La + 0.51Ca, ограничивающей применимость рентгеновской дифракции для анализа катионного

25

Рис. 2. Высокочастотные части тех же спектров, что на рис. 1.

Таблица 3. Результаты расчета распределения атомов X = (La, Ca, Sr) в подрешетках щелочноземельных элементов Y = (Ca, Sr) для твердых растворов. 1 — Bi₂Sr_{1.75}La_{0.25}CaCu₂O_{8+ δ}, 2 — Bi₂Sr_{1.5}La_{0.5}CaCu₂O_{8+ δ}, 3 — Bi₂Sr₂Ca_{0.75}La_{0.25}Cu₂O_{8+ δ} (X(Y) — заселенность атомами X позиций атомов Y)

X(Y)	$1 - Sr_{1.75}La_{0.25}$	2 — Sr _{1.5} La _{0.5}	$3 - Ca_{0.75}La_{0.25}$
Sr(Sr)	1.54	1.46	1.68
Ca(Sr)	0.24	0.34	0.08
La(Sr)	0.22	0.20	0.24
Sr(Ca)	0.21	0.04	0.32
Ca(Ca)	0.76	0.66	0.67
La(Ca)	0.03	0.30	0.01
$R_{wp},\%$	8.35	7.59	8.26

распределения в исследуемой системе, учет параметров второго порядка (несоразмерной модуляции) представлялся нецелесообразным и расчеты проводились с учетом только субструктурных отражений. Таким образом, пик с d = 2.44 Å, отвечающий несоразмерномодулированной сверхструктуре, не использовался при вычислениях и увеличивал значение R_{wp} -фактора. Влияние модуляций на субструктурные пики учитывалось заданием среднеквадратичных смещений атомов в слое Bi₂O₂, равными 2 Å, что соответствует амплитуде модуляции по данным [15]. Для остальных атомов среднеквадратичное смещение принималось равным 0.02 Å.

Расчет с использованием различных среднеквадратичных смещений атомов в данном слое показал, что эта величина слабо влияет на получаемые значения катионного распределения. При этом для повторных экспериментов и расчетов с различными наборами начальных условий были получены воспроизводимые данные. Из этого был сделан вывод, что расчет по методу Ритвельда с использованием рентгенодифракционных данных может применяться для анализа катионного распределения в данных твердых растворах. По причине ограничения применимости рентгенодифракционных методов для решения поставленной задачи представляется целесообразным рассматривать только предпочтительность нахождения катиона в той или иной кристаллографической позиции.

Оценка отношения частот колебаний атомов в слое SrO для различных концентраций La проводилась с использованием данных, представленных в табл. 3, аналогично проведенной в работе [6] по формуле

$$\omega_1/\omega_2 = \left((Z_1\mu_2)/(Z_2\mu_1) \right)^{1/2},$$
 (2)

где ω — частота колебаний, $Z = Z(La)\alpha + Z(Sr)(1 - \alpha)$, Z(La), Z(Sr) — заряды ионов La³⁺ и Sr²⁺, $\mu = \alpha m(La)$ $+\beta m(Ca) + (1 - \alpha - \beta)m(Sr)$, α — доля La в кристаллографических позициях Sr, β — доля Ca в кристаллографических позициях Sr, m(La), m(Sr), m(Ca) — атомные массы La, Sr и Ca, индексы 1 и 2 относятся к сравнивае-

Таблица 4. Экспериментальные и рассчитанные по (2) значения ω_1/ω_2 для твердых растворов $Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$ $(x_1 = y_1 = 0)$

Состав трерлого	$Bi_2Sr_{2-y}Ca_{1-x}La_{x+y}Cu_2O_{8+\delta}$					
раствора	$x_2 = 0, y_2 = 0.25$	$x_2 = 0, y_2 = 0.5$	$x_2 = 0.25, y_2 = 0,$			
Расчет Эксперимент	0.960 0.997	0.974 0.995	0.995 0.976			

мым твердым растворам с различной концентрацией La. Формула получена в модели колебаний атома в поле жесткого кристалла с использованием предположения о пропорциональности силы межатомного взаимодействия в преимущественно ионном кристалле среднему заряду катиона ($(1 - \alpha - \beta)$ Sr²⁺ + β Ca²⁺ + α La³⁺) при постоянном заряде аниона (O²⁻). Такая модель, как правило, удовлетворительно описывает так называемое одномодовое поведение спектра колебаний твердого раствора замещения (см., например, [16]).

Полученные результаты представлены в табл. 4. В исследуемом случае описанный приближенный расчет хуже согласуется с наблюдаемыми частотами колебаний атомов в слое SrO, чем в случае Nd-содержащих твердых растворов [6] (что может быть связано с различиями ионных радиксов Nd³⁺ и La³⁺), однако согласуется с направлениями сдвигов этих частот.

Помимо эффекта сдвига частоты колебаний катионов в слое SrO (низкочастотная часть спектра) наблюдается определенная модификация высокочастотной части $G(\varepsilon)$ в зависимости от типа и степени замещения ЩЗЭ на La (рис. 2). Именно в этой части спектра должны проявляться эффекты, связанные как с изменением концентрации носителей заряда в слое CuO₂, так и с "внутренним давлением". На рис. 2 виден рост $G(\varepsilon)$ в интервале 40–60 meV (пик 6) для всех La-содержащих образцов по сравнению с незамещенным Bi2212. При этом при замещении Ca на La граничная частота, как указывалось выше, несколько увеличивается. Аналогичный эффект увеличения граничной частоты наблюдался в [6] при замещении Ca на Nd для образца Bi₂Sr₂Ca_{0.25}Nd_{0.75}Cu₂O_{8+ δ} (рис. 3). Наблюдающиеся различия в форме спектров колебаний атомов кислорода для Nd- и La-содержащих твердых растворов на основе Bi2212 могут быть вызваны, по-видимому, либо различием ионных радиусов Nd³⁺ и La³⁺ (1.25 и 1.30 Å, согласно [5]), либо различиями в зарядах кристаллографических слоев, содержащих кислород (наиболее вероятно — слоев SrO и Bi₂O₂). Наличие у иона Nd³⁺ магнитного момента, отсутствующего у La³⁺, как можно заключить на основании полученных нами спектров в зависимости от угла рассеяния, не оказывает сколько-нибудь заметного влияния на фононный спектр в низкочастотной области. Тем более его нельзя ожидать в высокочастотной области спектра при значениях передач импульса, использованных в работе.

Рис. 3. Высокочастотные части спектров $G(\varepsilon)$ для образцов Bi₂Sr₂Ca_{1-x}Nd_xCu₂O_{8+ δ} (I - x = 0.1, 2 - 0.25, 3 - 0.75).

В табл. 5 приведены значения средних ионных радиусов и зарядов катионов в позициях Са и Sr для обсуждаемых составов (по данным настоящей работы и [13]). Как видно из приведенных данных, различия в радиусах весьма невелики, и это позволяет предположить, что размерный фактор (эффект "внутреннего давления") не является основной причиной наблюдаемых различий в высокочастотной части спектра РЗЭ-содержащих твердых растворах на основе Bi2212.

Сравнивая измеренные в [6] спектры Nd-содержащих твердых растворов с полученными в настоящей работе

Таблица 5. Средние ионные радиусы (R, Å) и заряды (Z) катионов в позициях Sr (1) и Ca (2) для твердых растворов Bi₂Sr_{2-x}La_xCa_{1-y-z}Nd_yLa_zCu₂O_{8+ δ}

Состав	x = y = z = 0	x = z = 0, y = 0.1	x = z = 0, y = 0.25	x = z = 0, y = 0.75	y = z = 0, x = 0.25	y = z = 0, x = 0.5	y = x = 0, z = 0.25
(1) <i>R</i>	1.40	1.38	1.39	1.37	1.37	1.37	1.38
<i>Z</i>	2.00	2.04	2.00	2.19	2.11	2.10	2.12
(2) <i>R</i>	1.27	1.31	1.29	1.30	1.29	1.28	1.31
<i>Z</i>	2.00	2.02	2.25	2.37	2.03	2.30	2.01

спектрами La-содержащего Bi2212, можно предположить, что наблюдаемое перераспределение интенсивностей колебательных мод атомов кислорода при замещении ЩЗЭ на La связано, прежде всего, с увеличением среднего заряда катионов в слое SrO.

Другой эффект — увеличение граничной частоты ω_{cut} при замещении Са на La или Nd — по-видимому, также обусловлен изменением зарядового состояния иона и, возможно, небольшим различием радиусов катионов Са и La $(R_{Ca} < R_{La})$. Некоторые различия в форме высокочастотной части спектров при замещении Са на La и Nd обусловлены, вероятно, разной контрастностью парциальных спектров этих атомов в суммарном нейтроновзвешенном спектре, а также раличной степенью заполнения альтернативных позиций (в данном случае позиций Sr). При замещении Sr на La наблюдается тот же эффект изменения формы высокочастотной части спектра. Как и в первом случае, это связано с изменением зарядового состояния катиона. Однако при этом роста ω_{cut} не происходит. На наш взгляд, последнее определяется размерным эффектом, поскольку радиус La заметно меньше радиуса Sr.

Таким образом, в работе методом неупругого рассеяния нейтронов измерены фононные спектры твердых растворов $Bi_2Sr_{2-\nu}Ca_{1-x}La_{x+\nu}Cu_2O_{8+\delta}$.

Методом полнопрофильного анализа дифрактограмм проведена оценка распределения La по кристаллографическим позициям Ca и Sr в названных твердых растворах и показана его непротиворечивость результатам нейтронодинамических измерений.

Показано, что замещение ЩЗЭ на La в структуре $Bi_2Sr_2CaCu_2O_8$ приводит к заметным изменениям высокочастотной ($\varepsilon > 40 \text{ meV}$) части нейтроновзвешенного спектра частот по сравнению с незамещенным $Bi_2Sr_2CaCu_2O_8$. Указанное изменение, вероятно, связано с увеличением среднего заряда катионов в слое SrO структуры $Bi_2Sr_2CaCu_2O_8$.

Список литературы

- [1] A. Manthiram, J.B. Goodenough. Appl. Phys. Lett. **53**, 420 (1988).
- [2] N.A. Babushkina, M.V. Dobrotvorskaya, N.A. Kasatkina, Yu.B. Poltoratsky, V.L. Sobolev, S.V. Kucheiko. Physica C197, 299 (1992).
- [3] B. Renker, F. Gompf, D. Ewert, P. Adelmann, H. Schmidt, E. Gering, H. Mutka. Z. Phys. B77, 65 (1989).
- [4] M. Kakihana, M. Osada, M. Kall, H. Mazaki, H. Yasuoka, M. Yashima, M. Yoshimura. Phys. Rev. B53, 11796 (1996).
- [5] R.D. Shannon, С.Т. Prewitt. Acta Crystallogr. **B25**, 935 (1969).
 [6] А.В. Кнотько, А.В. Гаршев, В.И. Путляев, С.И. Морозов.
- ΦΤΤ **42**, 2000, 1537 (2000).
- [7] В.А. Парфенов, П.С. Клемышев, И.Г. Морозов, А.Ф. Павлов. Neutr. Inelast. Scatt., IAEA, Vienna (1978). Vol. 1, p. 81.
- [8] В.Ф. Турчин. Медленные нейтроны. Госатомиздат, М. (1963). С. 223.
- [9] A. Sjolandar. Ark. fuer Fysik 14, 315 (1958).

- [10] D. Shimada, N. Tsuda, U. Paltzer, F.W. de Wette. Physica C298, 195 (1998).
- [11] П.П. Паршин, М.Г. Земляков, А.В. Иродова. ФНТ **22**, *5*, 564 (1996).
- [12] П.П. Паршин, М.Г. Земляков, А.В. Иродова, П.И. Солдатов, С.Х. Сулейманов. ФТТ 38, 1665 (1996).
- [13] А.В. Кнотько, А.В. Гаршев, А.Г. Вересов, В.И. Путляев. Ю.Д. Третьяков. Материаловедение *1*, 42 (2000).
- [14] F. Izumi. The Rietveld Method / Ed. by R.A. Young. Oxford University Press, Oxford (1993). Ch. 13.
- [15] P.A. Miles, S.J. Kennedy, G.J. McIntyre, G.D. Gu, G.J. Russell, N. Koshizuka. Physica C294 275 (1998).
- [16] Х. Бётгер. Принципы динамической теории решетки. Мир М., (1986). С. 138.