Механизм протонной проводимости в кристалле NH₄HSeO₄

© Ю.Н. Иванов, А.А. Суховский, И.П. Александрова, Й. Тотц*, Д. Михель*

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия *Лейпцигский университет, D04103 Лейпциг, Германия E-mail: rsa@iph.krasn.ru

(Поступила в Редакцию 20 июля 2001 г. В окончательной редакции 25 октября 2001 г.)

Процессы химического обмена дейтронов в кристалле частично дейтрированного гидроселената аммония исследованы методом дейтронного магнитного резонанса в широком температурном интервале. Температурные зависимости ЯМР-спектров выше 350 К обнаруживают изменения формы линии, характерные для процессов химического обмена. Детальное изучение этих обменных процессов проведено методом двумерной ²Н ЯМР-спектроскопии. Установлено, что во всем исследованном интервале температур происходит обмен только между дейтронами водородных связей, причем скорости обмена между всеми типами дейтронов примерно одинаковы. Обмена дейтронов ND₄-групп и водородных связей не обнаружено. На основе полученных экспериментальных данных предложена новая модель протонного транспорта в гидроселенате аммония, которая позволила с единых позиций объяснить всю совокупность экспериментальных результатов, в том числе макроскопических измерений проводимости.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант No 00-15-96790).

Кристаллы с высокой ионной проводимостью в последние годы вызывают повышенный интерес исследователей. Это обусловлено, с одной стороны, важным практическим применением этих соединений, а с другой — возможностью изучения фундаментальных проблем электропроводимости в суперионных кристаллах [1-4]. С этой точки зрения чрезвычайно интересны кристаллы, в структуре которых присутствуют квазиодномерные цепочки водородых связей. Такие кристаллы служат хорошими модельными объектами для проверки различных предположений о микроскопических механизмах ионной проводимости. Гидроселенат аммония (ГСелА), NH₄HSeO₄, — один из таких кристаллов. В его структуре бесконечные квазиодномерные цепочки образованы тетраэдрами SeO₄, соединенными протонами водородных связей. Дейтерирование ГСелА позволило использовать мощный метод ЯМР квадрупольных ядер для изучения процессов протонного (дейтронного) транспорта. Наряду с обычной ЯМР Фурье-спектроскопией применялась современная двумерная (2D) ЯМР-спектроскопия, дающая уникальную возможность изучения элементарных процессов химического обмена дейтронов. Результаты 2D спектроскопии сравниваются с диэлектрическими измерениями, выполненными в широком диапазоне частот $(10^{-2} - 10^{6} \text{ Hz})$. Использование очень низких частот существенно увеличило точность определения проводимости образцов по постоянному току σ_{DC} и дало возможность провести количественное сравнение результатов диэлектрических и ЯМР-измерений в ГСелА. Структура и свойства монокристалла ГСелА детально описаны в [4-7]. Настоящая работа посвящена в основном анализу наших результатов с целью выявления микроскопического механизма протонного транспорта в ГСелА.

1. Методика эксперимента

Частично дейтерированные (25%) кристаллы ГСелА были выращены из водного раствора, содержащего избыток H₂SeO₄ и соответствующее количество тяжелой воды. При этом протоны не только водородных связей, но и аммонийных групп частично замещались дейтронами. Выбор степени дейтерирования обусловлен особенностями фазовой диаграммы кристалла, который при температуре выращивания (30°С) и дейтерировании более чем 45% растет в другой фазе [8]. Одни и те же образцы использовались как для ЯМР-исследований, так и для диэлектрических измерений. ²Н ЯМР-измерения были выполнены на ЯМР-спектрометре BRUKER MSL 300 с лармоновской частотой 46.073 MHz. Длительность 90° импульса была около 4 µs. Чтобы исключить влияние "мертвого времени" приемника ЯМР-спектрометра, использовалась спин-эхо-последовательность с расстоянием между импульсами 25 µs. Кроме того, для подавления уширения ²Н ЯМР-линий из-за диполь-дипольного взаимодействия с остающимися протонами использовалась протонная развязка. Двумерные ЯМР-исследования выполнялись с использованием спин-эхо-последовательности $(\pi/2)_x - t_1 - (\pi/2)_{-x} - \tau_m - (\pi/2)_x - \tau - (\pi/2)_y - \tau - t_2$, где t_1, t_2, τ и τ_m обозначают время эволюции, время измерения, расстояние между импульсами и время смешивания соответственно. Измерения диэлектрической восприимчивости проводились в диапазоне частот от 10² до

10⁶ Hz на диэлектрическом спектрометре Schlumberger Solartron 1255 HF Frequency Response Analyzer. Образцы толщиной около 0.8 mm вырезались из монокристалла ГСелА. В качестве электродов для диэлектрических измерений использовались тонкие золотые пленки, нанесенные в вакууме на поверхность образцов.

2. Экспериментальные результаты и обсуждение

Наиболее интересными особенностями кристалла ГСелА являются наличие сегнетоэлектрического состояния, связанного с упорядочением протонов на водородных связях, а также существование несоразмерной фазы [6,7] и протонной проводимости [1-3]. В параэлектрической фазе кристалл ГСелА имеет моноклинную ячейку с пространственной группой В2 и параметрами $a = 19.745 \text{ Å}, b = 4.611 \text{ Å}, c = 7.552 \text{ Å}, \gamma = 102.56^{\circ} \text{ [9]}.$ Основу структуры составляют тетраэдрические ионы SeO₄²⁻, соединенные водородными связями в бесконечные цепочки вдоль сегнетоэлектрической оси **b** (рис. 1). Аммонийные ионы связывают группы SeO₄ вдоль двух других осей а и с. Водородные связи, соединяющие различные структурные группы SeO₄, довольно сильно отличаются друг от друга. Длина водородных связей между группами Se (1) O₄ (α -связи) составляет 2.56 Å, а между группами Se (2) O₄ (β -связи) — 2.59 Å(рис. 1). В параэлектрической фазе протоны на α-связях динамически разупорядочены [6,7]. На основе изучения ¹Н ЯМР-спектров и измерения времени спин-решеточной релаксации протонов в работе [1] было сделано предположение, что в параэлектрической фазе происходит изотропное диффузионное движение как аммонийных групп, так и протонов, находящихся на водородных связях. Был также предложен и микроскопический механизм протонного транспорта, состоящий в коррели-

Рис. 1. Структура NH₄HSeO₄ в параэлектрической фазе. Показана половина элементарной ячейки. Водородные связи, соединяющие кислородные атомы групп SeO₄, обозначены волнистыми линиями.

рованной реориентации групп SeO₄ и таким образом последовательном переносе протонов от одной группы SeO₄ к другой по бесконечной цепочке водородных связей. В этом случае энергия активации реориентационного движения групп SeO₄ является лимитирующим фактором для скорости протонных прыжков, причем энергия активации изотропной диффузии аммонийных групп имеет примерно такое же значение, и группы NH₄ вносят значительный вклад в проводимость кристалла [1,2]. Однако все эти предположения строились в основном на изучении температурной зависимости второго момента (ширины линии) ¹Н ЯМР-спектров. Следует отметить, что во всем исследованном интервале температур протонный спектр состоит из одиночной линии, второй момент которой определяется главным образом диполь-дипольными взаимодействиями протонов аммонийных групп [1]. На наш взгляд, такие исследования не позволяют получить детальную информацию о микромеханизме протонного транспорта в ГСелА.

Для изучения микроскопических характеристик ГСелА в настоящей работе использовались спектры ²Н ЯМР частично дейтерированного ГСелА. Ядра дейтерия в отличие от протонов обладают квадрупольным моментом. Резонанс на ядрах с квадрупольным моментом дает информацию о величине и симметрии градиентов внутрикристаллических электрических полей в месте расположения исследуемого ядра. В случае сильного внешнего магнитного поля В₀, когда энергия зеемановского взаимодействия значительно превышает энергию взаимодействия квадрупольного момента ядра с внутрикристаллическим полем, последнее приводит к возмущению эквидистантных зеемановских уровней и расщеплению линии ЯМР на 21 (I — спин ядра) компонент, расположенных симметрично относительно частоты v_0 ларморовской прецессии в поле **B**₀ [10]. Следовательно, спектр ЯМР дейтронов ($I_D = 1$) состоит из дублетов, число которых для монокристаллического образца определяется в общем случае числом магнитно-неэквивалентных ядер дейтерия. Величина квадрупольного расщепления $v_2 - v_1$ описывается выражением [10]

$$\nu_2 - \nu_1 = \frac{6eQ}{4h} V_{zz}^{LAB} = \Phi_{zz},$$
 (1)

где Q — квадрупольный момент ядра, e — заряд электрона, h — постоянная Планка, V_{zz} — z-компонента (поле **B**₀ направлено вдоль оси **z**) градиента электрического поля (ГЭП) на ядре. Из ориентированных зависимостей квадрупольных расщеплений с помощью хорошо известного метода Волкова [11] могут быть найдены все компоненты V_{ij} тензоров ГЭП для каждой из структурно-неэквивалентных позиций дейтерия в кристалле в лабораторной системе координат. Тензор ГЭП (для простоты вместо V_{ij} будем использовать значения Φ_{ij} в частотных единицах) — симметричный тензор второго ранга с нулевым шпуром — отражает точечную симметрию положения исследуемого ядра.

	NH ₄ (1)				NH ₄ (2)			
Темпера- тура, К	Главные значения тензоров ГЭП	Направляющие косинусы (абсолютные значения) относительно кристаллографических осей			Главные значения тензоров ГЭП	Направляющие косинусы (абсолютные значения) относительно кристаллографических осей		
	Φ_{ii}, Hz	a*	b	с	Φ_{ii}, Hz	a *	b	с
300	$\begin{array}{l} \Phi_{11}=-1196\\ \Phi_{22}=-402\\ \Phi_{33}=-1598\end{array}$	0.51 0.4 0.76	0.77 0.61 0.19	0.39 0.68 0.62	$\begin{array}{l} \Phi_{11}=-1350\\ \Phi_{22}=-1329\\ \Phi_{33}=-2679 \end{array}$	0 0.73 0.68	0 0.68 0.73	1 0 0
390	$\begin{array}{l} \Phi_{11}=-920\\ \Phi_{22}=-519\\ \Phi_{33}=-1439 \end{array}$	0.26 0.47 0.84	0.93 0.35 0.09	0.26 0.81 0.53	$\Phi_{11} = -850 \ \Phi_{22} = -1306 \ \Phi_{33} = 2156$	0 0.72 0.69	0 0.69 0.72	1 0 0

Таблица 1. Параметры тензоров ГЭП для двух структурно-неэквивалентных аммонийных групп кристалла ГСелА

В частности, для водородных связей типа α - и β -связей в кристалле ГСелА направления главной оси тензора ГЭП Φ_{33} примерно совпадает с направление водородной связи О–Н...О, а направление главной оси Φ_{22} перпендикулярно плоскости Se–О...О, что позволяет отнести каждый тензор ГЭП к определенной водородной связи в кристалле. Таким образом, магнитный резонанс ²Н в частично дейтерированном ГСелА существенно расширяет возможности метода ЯМР и позволяет изучать динамические характеристики протонов, принадлежащих водородным связям и аммонийным группам, раздельно.

Типичная температурная зависимость (в интервале от 300 до 400 K) ²Н ЯМР-спектров в ГСелА приведена на рис. 2. Эти спектры были записаны при такой ориентации кристалла, когда ось b перпендикулярна внешнему магнитному полю B_0 , а угол между осью a^* и полем **B**₀ составляет 15°. В этой ориентации видны две группы линий. Центральные дублеты (рис. 2, *a*) принадлежат дейтронам аммонийных групп, а три дублета с расщеплением больше $20 \, \text{kHz}$ (рис. 2, b) дейтронам на водородных связях. Из рис. 2, а следует, что во всем температурном интервале существования параэлектрической фазы в центральной части спектра не происходит существенных изменений. Из угловых зависимостей ²Н ЯМР-спектров при 300 и 390 К были определены по два тензора ТЭП в каждом случае для дейтронов аммонийных групп (табл. 1). Один из этих тензоров близок к аксиально-симметричному тензору и принадлежит дейтронам аммонийных групп, занимающих частное положение, а другой соответствует дейтронам аммонийных групп в общем положении. Малая величина константы квадрупольной связи для этих дейтронов свидетельствует о быстрой реориентации аммонийных групп в параэлектрической фазе, и, таким образом, параметры тензора ГЭП отражают в данном случае некоторое "эффективное" искажение аммонийной группы, обусловленное ее окружением. Как видно из табл. 1, с ростом температуры параметры обоих тензоров ГЭП в параэлектрической фазе ГСелА меняются

Рис. 2. Температурная зависимость квадрупольных расщеплений в параэлектрической фазе ГСелА: a — центральных линий, принадлежащих дейтронам аммонийных групп, b — боковых линий, принадлежащих дейтронам водородных связей. Спектры записаны в ориентации кристалла с осью **b**, перпендикулярной внешнему магнитному полю **B**₀. Угол между осью **a**^{*} и **B**₀ составляет 15°.

Таблица 2. Теоретические (вычисленные с учетом всех магнитных ядер, кроме протонов, и случайного распределения дейтронов) и экспериментальные (при 300 K) значения вторых моментов ²Н ЯМР-линий аммонийных групп в кристалле ГСелА

Ориен-	Груп	па NH ₄ (1)	NH ₄ (2)		
тация	Λ	M_2 , Hz ²	M_2 , Hz ²		
\mathbf{B}_0	Расчет	Эксперимент	Расчет	Эксперимент	
∥ a*	$1.95\cdot 10^4$	$(2\pm0.2)\cdot10^4$	$1.58\cdot 10^4$	$(1.7\pm 0.2) \cdot 10^4$	
b	$1.96\cdot 10^4$	$(2\pm0.2)\cdot10^4$	$1.81 \cdot 10^{4}$	$(2\pm0.2)\cdot10^4$	
c	$1.5 \cdot 10^4$	$(1.7\pm 0.2) \cdot 10^4$	$1.1 \cdot 10^{4}$	$(1.2\pm 0.2) \cdot 10^4$	

Таблица 3. Теоретические (вычисленные так же, как в табл. 2, за исключением вклада от диполь-дипольного взаимодействия дейтронов аммонийных групп с дейтронами водородных связей) и эксперимнетальные (при 390 K) значения вторых моментов ²Н ЯМР-линий аммонийных групп в кристалле ГСелА

Ориен-	Груп	па NH ₄ (1)	Группа NH ₄ (2)		
тация	Λ	M_2 , Hz ²	M_2 , Hz ²		
\mathbf{B}_0	Расчет	Эксперимент	Расчет	Эксперимент	
a*	$6.89\cdot 10^3$	$(1.0\pm 0.2) \cdot 10^4$	$6.72 \cdot 10^3$	$(0.9\pm 0.2) \cdot 10^4$	
b	$1.5 \cdot 10^4$	$(1.6 \pm 0.2) \cdot 10^4$	$1.48 \cdot 10^4$	$(1.6 \pm 0.2) \cdot 10^4$	
c	$7.61 \cdot 10^{3}$	$(1.0 \pm 0.2) \cdot 10^4$	$7.63 \cdot 10^{3}$	$(0.9 \pm 0.2) \cdot 10^4$	

незначительно. Эти данные однозначно свидетельствуют об отсутствии химического обмена двух структурнонеэквивалентных аммонийных групп во всей области существования параэлектрической фазы. Следовательно, предположения работы [1] об изотропной диффузии аммонийных групп при 390 К должны быть пересмотрены. Анализ вторых моментов дипольно уширенных линий ²Н ЯМР согласуется с этими результатами и дает дополнительную информацию о движении дейтронов. Наибольший вклад в ширину линий ²Н аммонийных групп вносят межмолекулярное диполь-дипольное взаимодействие аммонийных дейтронов и диполь-дипольное взаимодействие с дейтронами на водородных связях. Дипольное уширение ²Н ЯМР-линий, обусловленное дипольным взаимодействием дейтронов с остающимися протонами, подавляется протонной развязкой, а внутримолекулярные дипольные взаимодействия дейтронов аммонийных групп усредняются вследствие быстрой реориентации последних. Вторые моменты ²Н ЯМР-линий мы рассчитывали, принимая во внимание дейтроны (с учетом степени дейтерирования) и другие магнитные ядра, кроме протонов. Решеточные суммы вычислялись в сфере радиуса 40 Å. Вычисленные вторые моменты согласуются с экспериментальными данными при 300 К (табл. 2). Экспериментальные значения вторых моментов ²Н ЯМР-линий аммонийных групп уменьшаются с ростом температуры (табл. 3). Интересно отметить,

ми, вычисленными без учета дипольного взаимодействия с дейтронами водородных связей. Данный факт свидетельствует о быстром диффузионном движении этих протонов (дейтронов). Более детальная информация о движении дейтронов водородных связей может быть получена из анализа соответствующих линий спектров ЯМР.
10⁴ Из рис. 2, *b* видно, что в температурном интерва-

что экспериментальные значения этих моментов при

390 К хорошо согласуются с теоретическими значения-

ле от 300 до 350 К заметных изменений в спектрах боковых компонент также не происходит. Из ориентационной зависимости соответствующих квадрупольных расщеплений при 300 К были получены параметры двух тензоров ГЭП в соответствии с двумя структурнонеэквивалентными позициями протонов на водородных связях (α- и β-связи), которые совпадают с результатами работы [12]. Выше 350 К происходит уширение боковых компонент ЯМР-спектра (рис. 2, b). Это свидетельствует о появлении процессов химического обмена в системе водородных связей кристалла, однако эффект такого обмена существенно меньше величины квадрупольного расщепления вплоть до температуры фазового перехода в суперионную фазу (417 К). Поэтому из этих спектров невозможно установить модель движения протонов, а можно только оценить скорость химического обмена с помощью хорошо известной теории Андерсона (см., например, [13]) по ширине линии ЯМР. Были найдены следующие значения скорости химического обмена: $0.5 \cdot 10^3 \text{ s}^{-1}$ при 370 K, $2 \cdot 10^3 \text{ s}^{-1}$ при 390 K и $4 \cdot 10^3 \text{ s}^{-1}$ при 400 К. Для получения информации о микроскопическом механизме подвижности дейтронов, скорости обмена и энергии активации этого процесса использовалась 2D²Н ЯМР-спектроскопия. Математическое описание процессов химического обмена и вычисления скоростей обмена из 2D ЯМР-спектров рассматриваются в ряде хорошо известных работ [14,15]. Здесь мы приведем лишь краткое описание метода. Динамика обменного процесса обычно характеризуется вероятностью (скоростью) p_{ii} перехода в единицу времени атома из положения і в положение *j*. Химический обмен описывается основным уравнением (см., например [13])

$$\frac{\partial n_i}{\partial t} = \sum_j^n p_{ij} n_j \tag{2}$$

или в матричном обозначении $\dot{\mathbf{n}} = \mathbf{pn}$ с решением

$$\mathbf{n}(t) = \exp(\mathbf{p} \cdot t)\mathbf{n}_0 = A(t)\mathbf{n}_0, \qquad (3)$$

где компоненты вектора $\mathbf{n}_0\{n_{01}, \ldots, n_{0i}\}$ — n_{0i} равны числу дейтронов в *i* положении в момент времени t = 0, а компоненты вектора $\mathbf{n}(t) = \{n_1, \ldots, n_i\} - n_i$ — числу дейтронов в той же позиции в момент $t = \tau_m$. Компоненты $A_{ij}(t)$ матрицы обмена A(t) в (3), полностью определяющие динамику обменного процесса дейтронов (протонов) в кристалле, могут быть найдены из интенсив-

Рис. 3. 2*D* ²Н ЯМР обменный спектр ГСелА (показан только верхний левый квадрант спектра) при температуре 350 К и времени смешивания 3 ms. Ориентация кристалла такая же, как на рис. 2. Обменный процесс характеризуется появлением недиагональных пиков и происходит между позициями дейтронов α , β' и β'' .

Рис. 4. Температурная зависимость скорости дейтронного обмена в ГСелА по данным одномерной и двумерной ЯМР-спектроскопии. $E_a = 81.1 \text{ kJ/mol}, p_0 = 1.9 \cdot 10^{14} \text{ s}^{-1}.$

ностей соответствующих пиков 2D ЯМР-спектров дейтрия [14,15]. Детальное описание исследований ГСелА методом 2D ²Н ЯМР-спектроскопии приведено в нашей работе [4]. Здесь мы приведем лишь существенные для прояснения микроскопического механизма протонной проводимости результаты. В ГСелА 2D ЯМР-эксперименты выполнялись в интервале температур от 300 до 350 К. Типичный 2D ²Н ЯМР-спектр ГСелА (при 350 К и времени смешивания 3 ms) представлен на рис. 3 левым верхним квадрантом полного 2D спектра. Измерения были выполнены в той же ориентации, что и при получении одномерных спектров на рис. 2. Типичные недиагональные пики (см., например, [14,15]) на рис. 3 указывают на существование дейтронного обменного процесса между двумя типами водородных связей (α - и β -связи) и между магнитно-неэквивалетными позициями соседних связей. Причем скорости этих процессов примерно равны. 2D ЯМР-спектры однозначно свидетельствуют об отсутствии химического обмена между дейтронами аммонийных групп и дейтронами водородных связей во всей температурной области существования параэлектрической фазы. На рис. 4 приведена температурная зависимость скорости обменного процесса, полученная по данным одно- и двумерной ЯМРспектроскопии. Сплошной линией показана аппроксимация этой зависимости уравнением Аррениуса с энергией активации E_a

$$p(T) = p_0 \exp(E_a/RT). \tag{4}$$

Следует отметить, что данные 2D спектроскопии и оценки, сделанные при высокой температуре из одномерных спектров, хорошо согласуются друг с другом и дают значение около 80 kJ/mol для энергии активации обменного процесса и предэкспоненциальный множитель $p_0 = 1.9 \cdot 10^{14} \, {\rm s}^{-1}$. Это указывает на существование единственного механизма протонной подвижности в параэлектрической фазе. Он состоит в последовательных прыжках с одной цепочки водородных связей на соседнюю цепочку. Поэтому в ГСелА не должно быть заметной анизотропии проводимости. Из диэлектрических измерений [5] мы определили проводимость параллельно и перпендикулярно кристаллографическому направления **b** (направление цепочек водородных связей). В пределах экспериментальной точности в температурном интервале от 300 до 350 К анизоропии проводимости обнаружено не было. Энергии активации для протонного обмена, полученные из наших ЯМР-данных и из температурной зависимости проводимости, совпадают с хорошей точностью [5]. При температуре выше 360 К наблюдается отклонение от аррениусовского поведения в сторону увеличения проводимости для обоих направлений, причем величина этого отклонения менялась от образца к образцу при одинаковой ориентации. Причина такого поведения, по-видимому, заключается в большой гигроскопичности кристалла ГСелА. Во всех образцах обнаружено резкое увеличение проводимости при переходе в суперионную фазу.

При 417 К кристалл ГСелА переходит в высокотемпературную суперионную фазу. К сожалению, в этой фазе кристалл быстро теряет протоны и разрушается. По этой причине детальные ЯМР- и дифракционные исследования суперионной фазы невозможны. Имеются лишь предположения о симметрии данной фазы: P2/n [16] или $P2_1/b$ [17]. Мы изучали 2H ЯМР-спектры в температурном интервале 410–420 К для нескольких ориентаций кристалла ГСелА. Для каждой новой ориентации использовался отдельный образец. Температурная зависимость ²Н ЯМР-спектров при такой ориентации кристалла ГСелА, когда ось **b** перпендикулярна внешнему магнитному полю **B**₀, а угол между осью **a**^{*} и полем **B**₀ составляет 15°, приведена на рис. 5. Около

Рис. 5. Температурная зависимость квадрупольных расщеплений в ГСелА в окрестности фазового перехода в суперионное состояние: *a* — центральных линий, принадлежащих дейтронам аммонийных групп, *b* — боковых линий, принадлежащих дейтронам водородных связей. Ориентация кристалла такая же, как на рис. 2.

417 К в ²Н ЯМР-спектрах наблюдаются изменения. Появляется одиночный дублет с предельно узкими компонентами вместо дипольно уширенных ЯМР-линий, принадлежащих дейтронам водородных связей. С ростом температуры интенсивность узких линий растет, а дипольно-уширенных — уменьшается до нуля (характерное для фазовых переходов первого рода сосуществования фаз). Полученные результаты свидетельствуют о высокой диффузионной подвижности дейтронов (протонов) в суперионной фазе, полностью усредняющей дипольдипольное взаимодействие дейтронов на водородных связях. Центральные линии ЯМР-спектра, принадлежащие аммонийным группам, также изменяются при 417 К. Вместо квартета линий ЯМР параэлектрической фазы в этой ориентации появляется дублет с расщеплением около 200 Hz и шириной каждой компоненты 100 Hz. Таким образом, переход в суперионную фазу сопровождается изменением структурных позиций аммонийных групп (вместо двух — одна структурно-неэквивалентная позиция) и, возможно, появлением их диффузии. Однако скорость этого движения невелика и не может превышать ширины линии (~ 100 Hz). Следовательно, вклад в проводимость ГСелА аммонийных групп и в суперионной фазе пренебрежимо мал и проводимость последней, как и параэлектрической фазы, полностью определяется подвижностью протонов водородных связей.

Рассмотрим некоторые структурные характеристики ГСелА, важные для протонного транспорта. В параэлектрической фазе минимальное расстояние между протонами в эквивалентных позициях равно параметру b элементарной ячейки (4.61 Å). Оно больше, чем минимальное расстояние (3.91 Å) между позициями протонов в соседних цепочках водородных связей (рис. 1). Ближайшее расстояние между кислородными атомами соседних тетраэдров SeO₄, не участвующими в образовании водородных связей, равно примерно, 3.3 Å. Кроме того, имеются свободные позиции для протонов, например между атомами кислорода О3-О4 с расстоянием 3.18 Å. Из-за тепловых колебаний (либраций) групп SeO₄ эти расстояния могут быть еще короче. Между соответствующими кислородными атомами могут образовываться водородные связи с малым временем жизни. Перечисленные структурные аспекты совместно с данными 2D спектроскопии и отсутствием анизотропии проводимости позволяют закончить, что основным механизмом протонного транспорта в параэлектрической фазе ГСелА являются прыжки протонов между соседними цепочками водородных связей.

Резкое увеличение проводимости ГСелА при температуре выше 417 К может быть обусловлено как скачкообразным понижением высоты потенцальных барьеров для диффузии протонов, так и разупорядочением атомов кислорода групп SeO₄ в суперионной фазе подобно тому, как это было найдено в кристалле $(NH_4)_3H(SeO_4)_2$ в работах [18,19]. Это предположение подтверждается данными работы [16], авторы которой объяснили всю последовательность фазовых переходов в ГСелА и его дейтерированном аналоге малыми искажениями "прафазы" с пространственной группой симметрии Іттт и одной формульной единицей на ячейку. Атомы селена и азота (центры SeO₄ и аммонийных групп соответственно) занимают в этой фазе частное положение Se (0,0,0), N (1/2,1/2,0). Согласно [16], пространственные группы Іттт и Р2/п описывают лишь некоторую "усредненную" симметрию ГСелА. В частности, в "прафазе" позиции тетраэдрических групп могут иметь центр инверсии лишь благодаря разупорядочению атомов кислорода вследствие реориентации групп SeO₄. В любом случае по сравнению с параэлектрической фазой значительно возрастают число возможных взаимных расположений атомов кислорода групп SeO₄ и число возможных позиций для протонов водородных связей. Как следствие скачком увеличивается проводимость высокотемпературной фазы. Из данных ЯМР 2 Н видно, что для всех протонов водородных связей в суперионной фазе существует единственный усредненный тензор ГЭП, что свидетельствует о высокой диффузионной подвижности этих протонов.

Таким образом, основным механизмом протонного транспорта в параэлектрической фазе ГСелА является обмен протонами между цепочками водородных связей, вытянутых вдоль оси **b**. В отличие от модели, предложенной в [1-2], рассмотренный выше механизм не лимитируется потенциальным барьером для реориентации групп SeO₄ и не требует одновременного разрыва двух водородных связей. Этот механизм позволяет с единых позиций объяснить всю совокупность экспериментальных данных, включая макроскопические измерения проводимости. Появление суперионной проводимости в высокотемпературной фазе ГСелА связано, по-видимому, с ориентационным разупорядочением групп SeO₄, обеспечивающим возрастание числа позиций для диффузии протонов.

Можно ожидать, что химический обмен протонов, аналогичный существующему в параэлектрической фазе ГСелА, осуществляется и в других кристаллах с цепочками водородных связей. С этой точки зрения чрезвычайно интересно провести подобные исследования в кристаллах, где система водородных связей имеет другую конфигурацию, в частности в кристалле KHSeO₄, в котором слои из цепочек водородных связей перемежаются слоями замкнутых "димеров" из групп SeO₄ [20]. В настоящее время такие исследования нами проводятся.

Список литературы

- [1] Ю.Н. Москвич, А.А. Суховский, О.В. Розанов. ФТТ **26**, 38 (1984).
- [2] R. Blinc, J. Dolinsek, G. Lahajnar, I. Zupancic, L.A. Shuvalov, A.I. Baranov. Phys. Stat. Sol. (b) K83, 123 (1984).
- [3] A.I. Baranov, R.M. Fedosyuk, N.M. Schagina, L.A. Shuvalov. Ferroelectrics Lett. 2, 25 (1984).
- [4] Yu.N. Ivanov, J. Totz, D. Michel, G. Klotzsche, A.A. Sukhovsky, I.P. Aleksandrova. J. Phys.: Cond. Matter 11, 3151 (1999).
- [5] J. Totz, D. Michel, Yu.N. Ivanov, I.P. Aleksandrova, J. Peterson, A. Klöpperpieper. Appl. Magn. Res. 17, 243 (1999).
- [6] I.P. Aleksandrova, O.V. Rozanov, A.A. Sukhovskii, Yu.N. Moskvich. Phys. Lett. A95, 339 (1983).
- [7] I.P. Aleksandrova, Ph. Colomban, F. Denoyer, N.Le. Calve, A. Novak, B. Pasquier, A. Rozicki. Phys. Stat. Sol. (a) 114, 531 (1989).
- [8] A.A. Sukhovsky, Yu.N. Moskvich, O.V. Rozanov, I.P. Aleksandrova. Ferroelectrics Lett. 3, 45 (1984).
- [9] К.С. Александров, А.И. Круглик, С.В. Мисюль, М.А. Симонов. Кристаллография 25, 1142 (1980).
- [10] R.V. Pound. Phys. Rev. 79, 4, 685 (1950).
- [11] G.V. Volkoff, H.E. Petch, D.W. Smellie. Phys. Rev. 84, 602 (1951).
- [12] Yu.N. Moskvich, O.V. Rozanov, A.A. Sukhovsky, I.P. Aleksandrova. Ferroelectrics 63, 83 (1985).

- [13] А. Абрагам. Ядерный магнетизм. ИЛ, М. (1963). 551 с.
- [14] C. Schmidt, B. Blümich, H.W. Spiess. J. Magn. Res. 79, 269 (1988).
- [15] S. Kaufmann, S. Wefing, D. Schaefer, H.W. Spiess. J. Chem. Phys. 93, 197 (1990).
- [16] V. Dvorak, M. Quilichini, N.Le Calvé, B. Pasquier, G. Heger, P. Schweiss. J. Phys. France 1, 1481 (1991).
- [17] A. Onodera, A. Rozycki, F. Denoyer. Ferroelectrics Lett. 9, 77 (1988).
- [18] Б.В. Меринов, М.Ю. Антипин, А.И. Баранов, А.М. Трегубенко, Л.А. Шувалов, Ю.Т. Стручков. Кристаллография 36, 872 (1991).
- [19] A. Piertaszko, B. Hilczer, A. Pawlowski. Solid State Ion. 119, 281 (1999).
- [20] J. Baran, T. Lis. Acta Cryst. C42, 270 (1986).