Причины фрустрации магнитных связей в феррите NiFeCrO₄

© Л.Г. Антошина, А.Н. Горяга, Д.А. Чурсин

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Поступила в Редакцию 18 июня 2001 г.)

Впервые проведено исследование магнитострикции образца NiFeCrO₄. Установлено, что фрустрация магнитных связей имеет место только в *B*-подрешетке феррита, тогда как в *A*-подрешетке магнитная структура носит обычный характер. Сделан вывод, что причиной фрустрации магнитных связей в *B*-подрешетке является не только прямой отрицательный *BB*-обмен $Cr_B^{3+}-Cr_B^{3+}$, но и косвенный положительный *AB*-обмен $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$.

На основе экспериментальных данных и анализа обменных взаимодействий в образце NiFeCrO₄ впервые показано, что в данном феррите имеет место отклонение магнитных моментов ионов Fe_A^{3+} от коллинеарности. Установлено, что при низких температурах ответственной за суммарный магнитный момент n_{0exp} данного феррита является *B*-подрешетка.

Ферриты со структурой шпинели являются наиболее подходящими объектами для образования фрустрированной магнитной структуры. Такая магнитная структура создается в них, как правило, путем разбавления обеих подрешеток феррита немагнитными ионами [1]. Известно однако, что для создания такой структуры достаточно наличия в ферритах-шпинелях нескольких обменных взаимодействий, различных как по знаку, так и по величине [2]. В последнее время появились работы [3,4], в которых фрустрированная магнитная структура обнаружена в ферритах-храная магнитная структура обнаружена в ферритах-присутствие которых, по мнению авторов, и приводит к фрустрации магнитных связей.

Недавно с помощью эффекта Мессбауэра было обнаружено, что фрустрированная магнитная структура имеет место в феррите-хромите NiFeCrO₄ [5]. Авторы этой работы считают, что причиной фрустрации является наличие ионов Cr^{3+} в октаэдрических узлах феррита. Представляло интерес выяснить, является ли наличие ионов Cr^{3+}_{B} единственной причиной возникновения фрустрированной магнитной структуры в феррите NiFeCrO₄, или есть еще другие существенные причины, которые вызывают фрустрацию магнитных связей.

Ранее [6] при анализе аномальных температурных зависимостей спонтанной намагниченности $\sigma_s(T)$ у ферритов-хромитов нами был сделан вывод, что для возникновения аномальной зависимости *N*-типа (по Неелю) необходимо, чтобы хотя бы в одной из подрешеток феррита была фрустрированная магнитная структура. Поэтому представляло интерес выяснить, имеет ли место аналогичное явление у феррита NiFeCrO₄, также имеющего точку компенсации [1].

До сих пор в литературе остается открытым вопрос о том, какая из подрешеток феррита NiFeCrO₄ является ответственной за магнитный момент при 0 К. Например, в работе [7] предполагается, что ответственной за магнитный момент является *A*-подрешетка, а в работе [8,9] — *B*-подрешетка феррита. Известно, что данный феррит-хромит имеет катионное распределение Fe[NiCr]O₄. В предположении неелевского спинового упорядочения, учитывая, что все ионы имеют только спиновый магнитный момент $\mu_{Fe^{3+}} = 5\mu_B$, $\mu_{Ni^{2+}} = 2\mu_B$ и $\mu_{Cr^{3+}} = 3\mu_B$ при T = 0 К, феррит-хромит теоретически должен иметь магнитный момент $n_{0th} = 0$ [9]. Однако экспериментально установлено, что при T = 0 К магнитный момент этого образца составляет $n_{0exp} = 0.4\mu_B$ [9]. Поскольку сильное прямое отрицательное обменное вза-имодействие между ионами Cr_B^{3+} приводит к неколлинеарной магнитной структуре в *B*-подрешетке, не исключено, что при T = 0 К ответственной за магнитный момент феррита-хромита NiFeCrO₄ может оказаться *A*-подрешетка. Таким образом, представляло интерес выяснить, почему у данного образца $n_{0th} < n_{0exp}$ и какая из его подрешеток определяет магнитный момент при 0 К.

Для решения вопроса о природе магнитного момента у феррита-хромита NiFeCrO₄ проведено исследование поведения его намагниченности, коэрцитивной силы и магнитострикции.

Образец NiFeCrO₄ был приготовлен по керамической технологии. Первый отжиг проводился при температуре 1000°C в течение 4 h, второй — при температуре 1350°C также в течение 4 h. Оба отжига проводились на воздухе с последующим медленным охлаждением. Проведенные рентгеновские исследования показали, что образец является однофазной шпинелью. Намагниченность измерялась баллистическим методом в полях до 11 kOe в интервале температур 80–600 K. Остаточная намагниченность σ_r и коэрцитивная сила H_c были определены из измерения петли гистерезиса. Магнитострикция измерялась температур от 80 до 400 K.

На рис. 1 приведены температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $(d\sigma_s/dT)(T)$. Видно, что зависимость $\sigma_s(T)$ является кривой типа N; температура компенсации составляет $T_c = 325$ К, температура Кюри $T_c = 575$ К. Экстраполяция зависимости $\sigma_s(T)$ на 0 К дает величину σ_{0s} , из которой найдено, что $n_{0exp} = 0.40 \pm 0.01 \,\mu_B$, что хорошо согласуется с данными [9].

Рис. 1. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $(d\sigma_s/dT)(T)$ для образца NiFeCrO₄.

Из рис. 1 также видно, что в районе температуры Кюри T_C зависимость производной спонтанной намагниченности от температуры $|(d\sigma_s/dT)(T)|$ имеет резкий максимум. Такое поведение зависимости $(d\sigma_s/dT)(T)$ вблизи T_C характерно для обычного ферримагнетика, имеющего зависимость $\sigma_s(T)$ типа Q, и это доказывает, что при T > T_c ответственной за магнитный момент является А-подрешетка феррита, в которой фрустрированная магнитная структура отсутствует. Однако при $T < T_c$ зависимость $(d\sigma_s/dT)(T)$ практически постоянна, что обычно наблюдается у ферритов с фрустрированной магнитной структурой [10,11]. Таким образом, исходя из поведения зависимостей $\sigma_s(T)$ (*N*-типа) и $(d\sigma_s/dT)(T)$, можно сделать предположение, что ответственной за магнитный момент феррита-хромита NiFeCrO₄ при 0K является октаэдрическая подрешетка.

Нами впервые проведено исследование продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций образца NiFeCrO₄. Используя данные λ_{\parallel} и λ_{\perp} , мы рассчитали величину объемной $\omega = \lambda_{\parallel} + 2\lambda_{\perp}$ магнитострикции. Известно, что для продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций ферромагнетика с нефрустрированной магнитной структурой выполняется правило Акулова: $\lambda_{\parallel} = -2\lambda_{\perp}$, в результате чего объемная магнитострикция ω должна быть равна нулю.

На рис. 2 приведены температурные зависимости объемной магнитострикции $\omega(T)$, рассчитанной в поле

H = 12 kOe, и восприимчивости парапроцесса $\chi_p(T)$, измеренной в поле H = 6-10 kOe. Обнаружено, что ниже температуры компенсации T_c величина ω , будучи отрицательной, резко возрастает с понижением температуры, достигая при T = 93 K значительной величины $(\omega \approx -193 \cdot 10^{-6})$. Выше T_c магнитострикция ω практически равна нулю, что согласуется с правилом Акулова и, таким образом, еще раз подтверждает, что в *A*-подрешетке магнитная структура не является фрустрированной. Из рис. 2 также видно, что резкий рост $\omega(T)$ ниже температуры T_c сопровождается резким увеличением воспримичивости парапроцесса $\chi_p(T)$, свидетельствующим об увеличении истинной намагниченности образца в магнитном поле.

Нами установлено, что поведение продольной λ_{\parallel} , поперечной λ_{\perp} и объемной ω магнитострикций сильно отличается для температур ниже температуры компенсации T_c и выше ее.

На рис. З приведены изотермы намагниченности $\sigma(H)$, продольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций, измеренные при температуре $T < T_c$. Видно, что как $\lambda_{\parallel}(T)$, так и $\lambda_{\perp}(T)$, будучи обе отрицательными, носят аномальный характер: величина λ_{\parallel} почти в 10 раз больше, чем λ_{\perp} . Отсутствие насыщения на кривой $\omega(H)$, так же как и на зависимости $\sigma(H)$, свидетельствует о наличии парапроцесса, связанного с уменьшением степени неколлинеарности в *B*-подрешетке феррита при низких температурах.

На рис. 4 приведены аналогичные изотермы $\sigma(H)$, $\lambda_{\parallel}(H)$, $\lambda_{\perp}(H)$ и $\omega(H)$, снятые при температуре $T > T_c$. Что касается величин λ_{\parallel} и λ_{\perp} , то во всех полях для них практически выполняется правило Акулова $\lambda_{\parallel} = -2\lambda_{\perp}$,

Рис. 2. Температурные зависимости объемной магнитострикции $\omega(T)$, рассчитанной в поле H = 12 kOe, и восприимчивости парапроцесса $\chi_p(T)$, измеренной в поле H = 6-10 kOe, для образца NiFeCrO₄.

Рис. 3. Изотермы намагниченности $\sigma(H)$, а также произвольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций для образца NiFeCrO₄ при T = 123.5 K.

Рис. 4. Изотермы намагниченности $\sigma(H)$, а также продольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций для образца NiFeCrO₄ при T = 343.5 K.

поэтому величина объемной магнитострикции $\omega \approx 0$. Также видно, что на зависимостях $\sigma(H)$, $\lambda_{\parallel}(H)$ и $\lambda_{\perp}(H)$ отсутствует насыщение. На основании этих результатов можно сделать вывод, что при $T > T_c$ парапроцесс имеет другую природу, чем в случае $T < T_c$. По-видимому, парапроцесс при $T > T_c$ обусловлен увеличением степени неколлинеарности в *B*-подрешетке феррита.

Таким образом, проведенные исследования магнитных и магнитострикционных свойств феррита Fe[NiCr]O₄ позволили установить, что фрустрация магнитных связей имеет место только в *B*-подрешетке феррита, тогда как в *A*-подрешетке магнитная структура носит обычный характер. Также показано, что ответственной за магнитный $n_{0 \exp}$ у данного феррита является *B*-подрешетка.

Подтверждением данного вывода может быть аналогичное поведение изотерм продольной $\lambda_{\parallel}(H)$ и поперечной $\lambda_{\perp}(H)$ магнитострикций при $T < T_c$ феррита-

хромита NiFe_{1.1}Cr_{0.9}O₄, имеющего катионное распределение Fe[NiFe_{0.1}Cr_{0.9}]O₄, у которого при низких температурах ответственной за магнитный момент является B-подрешетка феррита [12].

Представляло интерес выяснить причины появления фрустрированных связей в феррите-хромите NiFeCrO₄. Поскольку причиной возникновения фрустрированной магнитной структуры может быть либо разбавление феррита немагнитными ионами [1], либо наличие в образце различных по знаку и величине обменных взаимодействий [2], то следовало оценить обменные взаимодействия между ионами, входящими в состав этого феррита.

В исследуемом образце, согласно [13], могут иметь место следующие обменные взаимодействия: межподрешеточные косвенные обменные взаимодействия $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$ и $Fe_A^{3+}-O_{2-}-Ni_B^{2+}$, внутриподрешеточные косвенные взаимодействия $Ni_B^{2+}-O^{2-}-Ni_B^{2+}$, $Ni_B^{2+}-O^{2-}-Cr_B^{3+}$ и $Cr_B^{3+}-O^{2-}-Cr_B^{3+}$, а также прямой обмен $Cr_B^{3+}-Cr_B^{3+}$. Внутриподрешеточными обменными взаимодействиями в *A*-подрешетке феррита со структурой шпинели как всегда можно пренебречь.

Ион $\operatorname{Fe}_{A}^{3+}(t_{2g}^{3}e_{g}^{2})$, имея магнитной d_{z2} -орбиталь, образует p_{σ} -связь с p-орбитой кислорода. В свою очередь ион $\operatorname{Cr}_{B}^{3+}(t_{2g}^{3}e_{g}^{0})$ имеет магнитными только t_{2g} -орбитали и образует с этой же орбитой кислорода p_{π} -связь. Следовательно, межподрешеточное косвенное обменное взаимодействие $\operatorname{Fe}_{A}^{3+}-\operatorname{O}^{2-}-\operatorname{Cr}_{B}^{3+}$, образованное $p_{\sigma}-p_{\pi}$ -связью, будет положительного знака умеренной силы [13]. Межподрешеточное косвенное обменное взаимодействие $\operatorname{Fe}_{A}^{3+}-\operatorname{O}^{2-}-\operatorname{Ni}_{B}^{2+}$ между ионами $\operatorname{Fe}_{a}^{3+}(t_{2g}^{3}e_{g}^{2})$ и $\operatorname{Ni}_{B}^{2+}(t_{2g}^{6}e_{g}^{2})$ образовано $p_{\sigma}-p_{\sigma}$ -связью, поэтому следует ожидать, что оно является отрицательным и сильным (высокая температура Кюри исследуемого феррита: $T_{C} = 575$ K).

Внутриподрешеточное *BB*-взаимодействие положительного знака между ионами Ni²⁺ в $(t_{2g}^6 e_g^2)$, расположенными в октаэдрических узлах, образованное $p_{\pi}-p_{\pi}$ -связью, будет слабым. Поскольку у иона Ni²⁺_B $(t_{2g}^6 e_g^2)$ магнитной будет e_g -орбита, а у иона Cr³⁺_B $(t_{2g}^3 e_g^0) - t_{2g}$ -орбита, внутриподрешеточное обменное взаимодействие Ni²⁺_B-O²⁻-Cr³⁺_B, образованное $p_{\sigma}-p_{\pi}$ -связью, будет отрицательным и сравнительно сильным. Внутриподрешеточный обмен Cr³⁺_B $(t_{2g}^3 e_g^0)$ будет прямым и сильным отрицательно-го знака. Отрицательное внутриподрешеточное косвенное обменное взаимодействие Cr³⁺_B $(t_{2g}^3 e_g^0)$ будет прямым и сильным отрицательно-го знака. Отрицательное внутриподрешеточное косвенное обменное взаимодействие Cr³⁺_B-O²⁻-Cr³⁺_B является очень слабым, и им, как правило, пренебрегают.

Таким образом, впервые показано, что в данном образце NiFeCrO₄ сильному отрицательному косвенному *AB*-обмену $Fe_A^{3+}-O^{2-}-Ni_B^{2+}$ противоборствует положительное косвенное *AB*-взаимодействие $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$ достаточной силы, что приводит к отклонению магнитных моментов ионов Fe_A^{3+} от коллинеарности. Поэтому можно сделать вывод, что экспериментальный суммарный магнитный момент $n_{0 exp}$ феррита NiFeCrO₄ будет обсуловлен возникновением неколлинеарности в *А*-подрешетке.

Внутриподрешеточные отрицательные обменные взаимодействия Ni²⁺_B $-O^{2-}-Cr^{3+}_{B}$ и Cr³⁺_B $-Cr^{3+}_{B}$, являясь значительно слабее межподрешеточных AB-взаимодействий, играют меньшую роль в формировании суммарного магнитного момента образца, однако приводят к появлению неколлинеарной магнитной структуры в B-подрешетке. По-видимому, при низких температурах под действием внешнего магнитного поля происходит уменьшение неколлинеарности в B-подрешетке, в результате чего на изотермах намагниченности $\sigma(H)$ и магнитострикций $\lambda_{\parallel}(H)$ и $\lambda_{\perp}(H)$ отсутствует насыщение.

Учитывая вышеизложенное, можно считать, что за создание фрустрированной магнитной структуры в *B*-подрешетке ответствен не только прямой отрицательный внутриподрешеточный обмен $Cr_B^{3+}-Cr_B^{3+}$, но и косвенный положительный межподрешеточный обмен $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$, роль которого будет больше, чем роль прямого обмена. Подтверждением данного предположения может служить тот факт, что в чистом никелевом хромите Ni[Cr₂]O₄ фрустрированная магнитная структура не обнаружена. Следовательно, большое количество ионов Cr_B^{3+} в отсутствие положительного *AB*-обмена $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$ не приводит к фрустрации магнитных связей в хромите NiCr₂O₄.

Основываясь на полученных результатах по исследованию намагниченности и магнитострикции ферритахромита NiFeCrO₄, можно сделать вывод, что фрустрированная магнитная структура имеет место только в *B*-подрешетке этого образца.

Список литературы

- [1] C.P. Poole, H.A. Farach. Z. Phys. B47, 55, (1982).
- [2] J.M.D. Coey. J. Appl. Phys. 49, (3), 1646 (1978).
- [3] K. Muraleedharan, J.K. Srivastava, V.R. Marathe, R. Vijayargharan. J. Magn. Magn. Mater. 49, 333 (1985).
- [4] H. Mohan, I.A. Shaikh, R.G. Kulkarni. Phys. B217, 292 (1996).
- [5] J.K. Srivastava, K. Muraleedharan, R. Vijayaragharan. Phys. Stat. Sol. (b) 140, K47 (1987).
- [6] Л.Г. Антошина, А.Н. Горяга, В.В. Саньков. ФТТ 42, 8, 1446 (2000).
- [7] J.A. Kulkarni, K. Muraleedharan, J.K. Srivastava, V.R. Marathe, V.S. Darshane, C.R.K. Murty, R. Vijayaraghavan. J. Phys. C: Solid State Phys. 18, 2593 (1985).
- [8] J.K. Srivastava, K.Le. Dang, P. Veillet. J. Phys. C: Solid State Phys. 19, 599 (1986).
- [9] T.R. McGuire, S.W. Greenwald. Solid State Physics in Electronics and Telecommunications (3(1)), 50 (1960).
- [10] Л.Г. Антошина, Е.Н. Кукуджанова. ФТТ 40, 8, 1505 (1998).
- [11] Л.Г. Антошина, А.Н. Горяга, Е.Н. Кукуджанова, И.А. Фильгус. ЖЭТФ 111, 5, 1732 (1997).
- [12] Л.Г. Антошина, А.Н. Горяга, Р.Р. Аннаев. ФТТ 42, 11, 2048 (2000).
- [13] Д. Гуденаф. Магнетизм и химическая связь. Металлургия, М., (1968).