Релаксация при импульсном перемагничивании монокристаллических пленок (Bi,Lu)₃(Fe,Ga)₅O₁₂ с ориентацией (210)

© В.В. Рандошкин, А.М. Салецкий, Н.Н. Усманов

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Поступила в Редакцию 5 июня 2001 г.)

Методом фотоотклика исследованы процессы релаксации при импульсном перемагничивании монокристаллических пленок состава (Bi,Lu)₃(Fe,Ga)₅O₁₂ с ориентацией (210) в зависимости от амплитуды и длительности перемагничивающего импульса. Перемагничивание происходит путем формирования, движения и разрушения торцевой доменной стенки.

Среди висмутсодержащих монокристаллических пленок ферритов-гранатов (Вс-МПФГ) выращиваемые методом жидкофазной эпитаксии из переохлажденного раствора-расплава на подложках Gd₃Ga₅O₁₂ пленки состава (Bi,Lu)₃(Fe,Ga)₅O₁₂ являются материалами, обладающими наибольшим фарадеевским вращением [1]. К сожалению, при использовании подложек с кристаллографической ориентацией (111) скорость движения доменных стенок (ДС) в этих материалах невелика [2]. Более высокую скорость ДС имеют пленки указанного состава, выращенные на подложках с Заметим, что еще более ориентацией (210) [3]. высоким быстродействием обладают пленки состава (Bi,Y,Lu,Pr)₃(Fe,Ga)₅O₁₂ с ориентацией (210) [4]. Однако ионы Pr^{3+} вносят значительное затухание, а ионы Y^{3+} совместно с ионами Bi³⁺ создают высокую ромбическую и одноосную магнитную анизотропию. Пленки состава (Bi,Lu)₃(Fe,Ga)₅O₁₂ занимают промежуточное положение, позволяющее проследить изменение динамических свойств Вс-МПФГ при переходе от пленок с наименьшим затуханием [2,5-7], свойства которых практически изотропны в их плоскости, к наиболее анизотропным пленкам, параметр затухания которых зависит от направления движения ДС в плоскости пленки [8,9].

Целью настоящей работы являлось исследование методом фотоотклика процесса релаксации при импульсном перемагничивании Вс-МПФГ состава (Bi,Lu)₃(Fe,Ga)₅O₁₂ с ориентацией (210).

Исследования проводились на универсальной магнитооптической установке [3], позволяющей наблюдать процесс перемагничивания с помощью высокоскоростной лазерной фотографии. Для визуализации доменной структуры использовался эффект Фарадея. Источником подсветки служил лазер, $\lambda \cong 638 \, \mathrm{nm.}$ Образец помещался между поляризатором и анализатором, угол между осями пропускания которых позволял наблюдать доменную структуру в амплитудном контрасте. Фотоприемником служил фотоумножитель ФЭУ. Сигнал с ФЭУ поступал на входы аналого-цифрового преобразователя и двухканального осциллографа. Постоянное магнитное поле (поле смещения) Н_b создавалось с помощью катушки. Для наблюдения динамических доменов использовался импульсный лазер с длительностью светового импульса 10 ns. Источник импульсов тока синхронизировали с лазером с помощью генератора импульсов Г5-67.

В работе приводятся данные для образца со следующими параметрами: толщина пленки $h \cong 11 \,\mu$ m, угол наклона оси легкого намагничивания (ОЛН) $\theta \cong 46^{\circ}$, намагниченность насыщения $4\pi M_s \cong 43$ G, безразмерный параметр затухания Гильберта $\alpha \cong 0.0135$, константа одноосной магнитной анизотропии $K_{\mu} \cong 1050 \, \text{erg/cm}^3$.

Безразмерный параметр затухания определялся из ширины линии ферромагнитного резонанса (ФМР). Сигнал ФМР содержал две линии, что свидетельствует о неоднородности Вс-МПФГ. Заметим, что из-за неоднородности МПФГ указанное значение α может быть завышенным. Значение $H_K - 4\pi M_s$, где $H_K = 2K_u/M_s$ — поле одноосной магнитной анизотропии, также определяли по данным ФМР, исходя из величин резонансных полей при ориентации внешнего магнитного поля перпендикулярно и параллельно плоскости пленки. Значение $4\pi M_s$ рассчитывалось исходя из поля коллапса цилиндрических магнитных доменов, при этом влиянием наклона ОЛН пренебрегалось.

На рис. 1 схематически изображены импульс магнитного поля и сигнал фотоотклика. В исходном состоянии образец намагничивался полем смещения, превышающим его поле насыщения H_s . Импульсное магнитное поле прикладывалось в противоположном направлении. Длительности фронта и спада импульса магнитного поля составляли 7 и 40 ns.

Рис. 1. Схематическое изображение перемагничивающего импульса (*a*) и сигнала фотоотклика (*b*).

Рис. 2. Зависимости времени нахождения образца в намагниченном состоянии $\tau_{\rm sm}$ (1), времени намагничивания образца $\tau_{\rm m}$ (2) и времени задержки спада сигнала фотоотклика после окончания импульса магнитного поля $\tau_{\rm db}$ (3) от амплитуды импульса магнитного поля $H_{\rm p}$ при фиксированной длительности импульса магнитного поля $\tau_{\rm p} \cong 1050$ ns.

Сигнал фотоотклика (рис. 1), как и в работе [10], характеризовался следующими параметрами: задержкой перемагничивания τ_{df} , длительностью фронта сигнала фотоотклика (скорость перемагничивания) τ_{f} , задержкой спада сигнала фотоотклика τ_{db} , длительностью спада сигнала фотоотклика τ_{b} . Кроме того, измерялось время нахождения образца в намагниченном (монодоменном) состоянии τ_{sm} . Время намагничивания τ_{m} определялось как $\tau_{m} = \tau_{df} + \tau_{f}$, а время релаксации в исходное состояние τ_{r} — как $\tau_{r} = \tau_{db} + \tau_{b}$. Длительность сигнала фотоотклика τ определялась на уровне 0.05, время нахождения образца в намагниченном состоянии τ_{sm} — на уровне 0.95, а длительности фронта и спада импульса — между уровнями 0.1 и 0.9.

На рис. 2 (кривая 1) показана зависимость времени нахождения образца в намагниченном состоянии $\tau_{\rm sm}$ от амплитуды импульса магнитного поля $H_{\rm p}$, полученная при фиксированной длительности импульса магнитного поля $\tau_{\rm p} = 1050$ ns. Величина $\tau_{\rm sm}$ возрастает с ростом $H_{\rm p}$, поскольку уменьшается время намагничивания образца (кривая 2 на рис. 2) и увеличивается время задержки спада сигнала фотоотклика после окончания импульса магнитного поля (кривая 3 на рис. 2). Увеличение $\tau_{\rm sm}$ с ростом $H_{\rm p}$ в большей степени связано с увеличением $\tau_{\rm db}$, в меньшей степени — уменьшением $\tau_{\rm m}$.

Величина $\tau_{\rm m}$ убывает как за счет уменьшения задержки перемагничивания $\tau_{\rm df}$, так и за счет повышения скорости перемагничивания.

На рис. 3 показаны зависимости времени нахождения образца в намагниченном состоянии $\tau_{\rm sm}$ от длительности импульса магнитного поля $\tau_{\rm p}$, полученные при фиксированных значениях $H_{\rm p}$. При малой амплитуде импульса магнитного поля, незначительно превышающей величину, которая необходима для перевода пленки

в монодоменное состояние, зависимость $\tau_{\rm sm}(\tau_{\rm p})$ линейная (кривая 1 на рис. 3), причем прямая расположена под углом 45° к оси абсцисс. Это соответствует тривиальному увеличению $au_{\rm sm}$ вследствие роста длительности импульса магнитного поля. При более высокой амплитуде импульса магнитного поля вид кривой $au_{
m sm}(au_{
m p})$ (кривая 2-4 на рис. 3) изменяется: на ней появляется начальный участок более резкого возрастания $\tau_{\rm sm}$. Это отражает факт увеличения $\tau_{\rm db}$ с ростом $H_{\rm p}$ (кривая 3 на рис. 2). Заметим, что начальный участок кривой $\tau_{\rm sm}(\tau_{\rm p})$ в некотором диапазоне амплитуд смещается в сторону оси ординат. В этом диапазоне амплитуд τ_{db} пропорционально и времени воздействия импульса от момента $\tau_{\rm m}$. При достаточно больших Н_р не только наклон, но и положение начального участка кривой $au_{\rm sm}(au_{\rm p})$ не зависит от $H_{\rm p}$. Это является отражением того факта, что $\tau_{\rm db}$ достигает насыщения с ростом $H_{\rm p}$ (кривая 3 на рис. 2).

Наблюдение процесса перемагничивания исследуемых Вс-МПФГ с помощью метода высокоскоростной фотографии показало, что он начинается формированием торцевой доменной стенки (ТДС), которая затем движется по толщине пленки, причем скорость ТДС в некотором диапазоне амплитуд линейно зависит от H_p. Тот факт, что на рис. 3 конечный участок кривых 2-4 смещен вверх относительно кривой 1 на одинаковую величину $\tau_{\rm d}$, свидетельствует о качественном изменении механизма перемагничивания Вс-МПФГ. По-видимому, при малых $H_{\rm p}$ и достаточно больших $\tau_{\rm p}$ ТДС достигает противоположной поверхности пленки, но не разрушается. После окончания импульса магнитного поля ее структура перестраивается (что и обусловливает задержку релаксации), а затем ТДС движется в противоположном направлении и разрушается в слое с пониженной одноосной анизотропией.

Рис. 3. Зависимости времени нахождения образца в намагниченном состоянии $\tau_{\rm sm}$ от длительности импульса магнитного поля $\tau_{\rm p}$ при фиксированных значениях амплитуды перемагничивающего импульса. $H_{\rm p}$, Ос: 1 - 45, 2 - 79, 3 - 107, 4 - 129.

719

При больших H_p и достаточно больших τ_p ТДС достигает противоположной поверхности пленки и разрушается, поэтому требуется дополнительное время τ_d на ее зарождение. Поскольку конечные участки кривых 2–4 на рис. 3 совпадают, это время не зависит от H_p , так как процесс релаксации определяется полем смещения.

Таким образом, в настоящей работе показано, что при импульсном перемагничивании Вс-МПФГ состава $(Bi,Lu)_3$ (Fe,Ga)₅O₁₂ с ориентацией (210) путем формирования и перемещения ТДС время задержки пленки в намагниченном состоянии при увеличении амплитуды перемагничивающего импульса изменяется скачком, причем указанный скачок не зависит от H_p .

Список литературы

- [1] В.В. Рандошкин, А.Я. Червоненкис. Прикладная магнитооптика. Энергоатомиздат, М. (1990). 320 с.
- [2] В.Е. Бахтеузов, Т.А. Ким, В.В. Рандошкин, В.Б. Сигачев, В.И. Чани, А.Я. Червоненкис. ЖТФ 55, 6, 1227 (1985).
- [3] Н.Н. Усманов, Е.Н. Ильичева, А.Г. Шишков. Вестн. МГУ. Сер. 3. Физика, астрономия 36, 5, 74 (1995).
- [4] В.В. Рандошкин, В.И. Чани, М.В. Логунов, В.П. Клин, Б.П. Нам, А.Г. Соловьев, А.Я. Червоненкис. Письма в ЖТФ 15, 14, 42 (1989).
- [5] V.V. Randoshkin. Proc. SPIE 1307, 10 (1990).
- [6] V.V. Randoshkin. Proc. SPIE 1469, 796 (1991).
- [7] В.В. Рандошкин. Тр. ИОФАН 35, 49 (1992).
- [8] В.В. Рандошкин, Ю.Н. Сажин. ЖТФ 66, 8, 83 (1996).
- [9] В.В. Рандошкин. ФТТ **39**, *8*, 1421 (1997).
- [10] М.В. Лагунов, В.В. Рандошкин. ЖТФ 55, 6, 1199 (1985).