Исследование колебаний решетки полупроводников II–VI, легированных 3*d*-элементами, методом комбинационного рассеяния света

© В.И. Соколов, F. Fillaux*, F. Romain*, P. Lemmens**, Н.Б. Груздев

Institute of Metal Physics, Russian Academy of Sciences Ural Branch, 620219 Ekaterinburg, Russia * Université P. & M. Curie, LADIR–CNRS–URM 7075 Thiais, France ** MPI for Solid State Research, MPI–FKF D-70569 Stuttgart, Germany

E-mail: visokolov@imp.uran.ru

Получены спектры комбинационного рассеяния при комнатной температуре для порошкообразных образцов соединений $Zn_{1-x}Ni_xSe$, $Zn_{1-y}Cr_ySe$ и для монокристаллического образца соединения $Zn_{1-x}Ni_xSe$ (x = 0.0025) в диапазоне температур 5–140 К. Результаты интерпретируются с точки зрения крупномасштабных сдвиговых искажений решетки, индуцированных 3*d*-элементами в этих твердых растворах.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследования (грант № 04-02-96094-р2004урал_а).

Влияние 3*d*-примесей на структуру полупроводников II–VI: 3*d* понималось только как локальная деформация решетки вокруг примесных центров, возникающая за счет изменения силового взаимодействия 3*d*-центра с ближайшим окружением. Спектры комбинационного рассеяния твердых растворов $II_{1-x}M_x$ VI интерпретировались в терминах локальных колебаний или как изменение частот оптических колебаний TO, LO в модели одномодового или двухмодового поведения [1–3].

Недавно в системе $Zn_{1-x}Ni_xSe$ (x = 0.0025) был обнаружен индуцированный никелем структурный фазовый переход при температуре 14.5 К [4]. Он свидетельствует о значительных дальнодействующих коррелированных смещениях ионов решетки, индуцированных примесями никеля. Представляется очень актуальным исследование колебательных состояний системы Zn_{1-x}Ni_xSe (x = 0.0025) и родственных соединений, поскольку колебания решетки весьма чувствительны к структурным искажениям решетки. В настоящей работе предпринято исследование колебательных состояний решетки методом комбинационного рассеяния света в твердых растворах $Zn_{1-x}Ni_xSe$ и $Zn_{1-y}Cr_ySe$. Спектры комбинационного рассеяния света систем $Zn_{1-x}Ni_xSe$, $Zn_{1-y}Cr_ySe$ регистрировались от образцов в виде пудры. Атомная доля 3*d*-элементов измерялась методом оптической эмиссионной спектроскопии индуктивно связанной плазмы [4] и в измеряемых образцах находилась в пределах $0 \le x \le 0.026$: $0 \le y \le 0.046$. Измерения проводились с использованием Spex Jvon-Dilor спектрометра и лазеров с длинами волн 632.8, 514 и 488 nm. Для системы $Zn_{1-x}Ni_x$ Se (x = 0.0025) спектры комбинационного рассеяния регистрировались также от монокристаллического образца с плоскостью (110) с использованием лазера с длиной волны 514 nm.

На рис. 1 представлены спектры рамановского рассеяния для порошкообразцых образцов. Спектр кристалла ZnSe содержит хорошо известные TO, LO, 2TA(X) и 2LO пики [5]. В легированных кристаллах $Zn_{1-x}Ni_xSe$ спектр комбинационного рассеяния испытывает ряд изменений. Происходит уширение TO и LO пиков, особенно заметное для LO пика. Пики второго порядка 2LO сохраняются, но их ширины также возрастают относительно исходных значений. Интенсивность пиков

Рис. 1. Спектры комбинационного рассеяния света порошкообразных образцов ZnSe (пунктирные линии), $Zn_{1-y}Cr_ySe$ (y = 0.046, штриховые линии), $Zn_{1-x}Ni_xSe$ (x = 0.026, сплошные линии), наблюдаемые в геометрии обратного рассеяния. Температура T = 300 K, длины волн лазерного возбуждения: 632.8 (a), 514 (b) и 488 nm (c). Все пики нормированы на интенсивность LO пика.

2ТА(X) растет с повышением уровня легирования, что отчетливо проявляется в спектрах для длины волны 633 nm (рис. 1, *a*). Аналогичные изменения проявляются для кристаллов $Zn_{1-y}Cr_ySe$.

Обнаружились также новые, ранее не наблюдавшиеся изменения в спектрах легированных соединений, что обусловлено использованием порошкообразных образцов, для которых проявляются все типы колебаний одновременно. В кристаллах $Zn_{1-x}Ni_xSe$, $Zn_{1-y}Cr_ySe$ наблюдаются две интенсивные широкие полосы рассеяния. Первая имеет место в низкочастотной части спектра, где происходит очень сильное возрастание интенсивности рассеяния в сторону понижения частоты рассеянного света. Интенсивность рассеяния света при низких частотах сравнивается или превосходит наиболее интенсивные LO пики. Низкочастотное рассеяние усиливается с ростом концентрации примеси никеля, хрома и с понижением энергии лазера. Вторая полоса появляется в интервале больших частот, между пиками LO-2LO. Ее интенсивность увеличивается с ростом частоты рассеянного света, с концентрацией примесей никеля и с повышением энергии лазера. Таким образом, очевидно появление дополнительного рассеяния в исследованных полупроводниках $Zn_{1-x}Ni_xSe$ и $Zn_{1-y}Cr_ySe$ по сравнению с чистым ZnSe, обусловленного наличием примесей Ni, Cr. Далее обсуждаются только эти полосы.

Начнем с системы $Zn_{1-x}Ni_xSe$, для которой недавно наблюдалось диффузное рассеяние нейтронов [6]. Анализ этих результатов привел к пониманию того, что в решетке $Zn_{1-x}Ni_xSe$ (x = 0.0025) наблюдаются области с поперечным смещением ионов решетки, имеющие размеры 3–15 nm в различных кристаллографических направлениях.

Это означает, что в кристалле возникло крупномасштабное разупорядочение, которое может исказить фононы и создать в спектре рамановского рассеяния пики первого порядка, активированные беспорядком в решетке [7-9]. Интенсивность пиков рассеяния первого порядка пропорциональна плотности фононов в решетке. Широкая полоса начинается с низких частот, и поэтому основной вклад в нее вносят акустические фононы, главным образом поперечные, поскольку ими обусловлен первый максимум плотности фононов в районе 70 ст⁻¹ [10]. Интенсивность рассеяния света пропорциональна также фактору Бозе-Эйнштейна, который резко нарастает в сторону низких энергий, и поэтому в спектре комбинационного рассеяния света максимум не проявляется. Вторая широкая полоса в интервале LO-2LO может быть представлена как результат процесса третьего порядка в виде разности частоты двухфононного 2LO колебания и частот активированных беспорядком однофононных колебаний.

Увеличение интенсивности низкочастотной широкой полосы с ростом длины волны лазера свидетельствует об энергии резонанса, меньшей энергии кванта света лазера с длиной волны 632.8 nm. Такой энергией может быть энергия ионизации примеси никеля $d^8 + \omega \rightarrow d^9 + h$,

Wavenumber, ст⁻¹ **Рис. 2.** Спектры комбинационного рассеяния света монокристаллического образца $Zn_{1-x}Ni_xSe$ (x = 0.0025), наблюдаемые в геометрии обратного рассеяния от плоскости (110) при температурах 5 (a), 20 (b) и 140 K (c). Сплошные кривые соответствуют поляризации падающего луча — x (направление [110]) и отраженного — y (направление [001]); штриховые кривые соответствуют поляризации обоих пучков — y (направление [001]).

равная приблизительно 1.85 eV [11]. Для Zn_{1-y}Cr_ySe также наблюдается широкая полоса, интенсивность которой нарастает в сторону понижения энергии возбуждающего лазера. Энергия ионизации хрома в ZnSe $d^4 + \omega \rightarrow d^5 + h$ равняется 2.26 eV [12]. Эта энергия немного превышает энергию кванта света лазера с длиной волны 632.8 nm. Вероятно поэтому резонансный характер не проявился очень ясно. Для подтверждения этого желательно провести измерение рамановского спектра с использованием лазера с энергией кванта света, значительно меньшей резонансной энергии. Учитывая видимое сходство широких низкочастотных полос в рамановских спектрах, можно полагать общность причин появления широких полос в спектрах рамановского рассеяния в материалах $Zn_{1-x}Ni_xSe$ и $Zn_{1-y}Cr_ySe$. Иными словами, мы полагаем, что в Zn_{1-v}Cr_vSe примесь хрома тоже индуцирует крупномасштабные поперечные смещения ионов решетки.

Спектры комбинационного рассеяния света $Zn_{1-x}Ni_xSe$ (x = 0.0025) приведены на рис. 2. Плоскость (110) была выбрана потому, что при обратном рассеянии от нее в кристаллах со структурой цинковой обманки проявляются только поперечные колебания [13]. На спектрах при температурах выше температуры перехода

 $(T_c = 14.5 \text{ K})$ отчетливо видны линии ТО фононов. Линии LO фононов очень слабы и появились, по-видимому, за счет погрешности в ориентации образца и разупорядоченности материала Zn_{1-x}Ni_xSe (x = 0.0025). При температуре 20 К видно два слабых и сравнительно широких пика для геометрий (*xy*) и (*yy*) для частоты приблизительно $90 \,\mathrm{cm}^{-1}$. Но в спектрах при 5 К появились заметные изменения. Линия ТО практически не изменила своей энергии, но наблюдается только в одной геометрии (*xy*). Совершенно отчетливо появились две линии. Первая с частотой $v_1 = 91 \, \text{cm}^{-1}$ наблюдается только в геометрии (уу) и имеет ширину, сравнимую с шириной ТО линии в высокочастотной и низкочастотной фазах. Вторая с частотой $v_2 = 740 \,\mathrm{cm}^{-1}$ появляется только в геометрии (ху). Видно, что ее ширина в несколько раз больше ширины первой линии. Мы пока ничего не знаем о симметрии низкотемпературной фазы. Поэтому дать определенную интерпретацию пика рамановского спектра не представляется возможным. Но совершенно определенно можно сказать, что различие спектров комбинационного рассеяния при температурах 20 и 5К весьма значительно.

В заключение отметим, что различие рамановских спектров в $Zn_{1-x}Ni_xSe$ (x = 0.0025) при 5 и 20 К является еще одним важным доводом в пользу существования фазового перехода в этом соединении при 14.5 К. Сходство низкочастотных широких полос в спектрах комбинационного рассеяния в материалах $Zn_{1-x}Ni_xSe$ и $Zn_{1-y}Cr_ySe$ позволяет считать, что в $Zn_{1-y}Cr_ySe$ при комнатной температуре имеют место индуцированные примесями Cr структурные искажения решетки, возможно, аналогичные поперечным смещениям, обнаруженным ранее в $Zn_{1-x}Ni_xSe$.

Один из авторов (В.И. Соколов) выражает благодарность Министерству по делам молодежи, образования и науки Франции (le Ministere de la jeunesse, de l'education nationale et de la recherche) за финансовую поддержку научного визита во Францию и персоналу LADIR CNRS за теплый прием. Авторы выражают благодарность J.-C. Rouchaud за измерение концентрации 3*d*-элементов в исследуемых образцах.

Список литературы

- А.В. Кроль, Н.В. Левичев, А.Л. Натадзе, А.И. Рыскин. ФТТ 20, 154 (1978).
- [2] D.L. Peterson, A. Petrou, A.K. Ramdas, S. Rodriguez. Phys. Rev. B 33, 1160 (1986).
- [3] A.K. Arora, E.K. Suh, U. Debska, A.K. Ramdas. Phys. Rev. B 37, 2927 (1998).
- [4] V.I. Sokolov, S.F. Dubinin, S.G. Teploukhov, V.D. Parkhomenko, A.T. Lonchakov, V.V. Gudkov, A.V. Tkach, I.V. Zhevstovskikh, N.B. Gruzdev. Solid State Commun. 129, 507 (2004).
- [5] Н.Н. Мельник, Е.А. Виноградов. ФТТ 18, 11, 3259 (1976).
- [6] В.И. Соколов, С.Ф. Дубинин, С.Г. Теплоухов, В.Д. Пархоменко, Н.Б. Груздев. ФТТ 47, 8, 1494 (2005).
- Физика твердого тела, 2005, том 47, вып. 8

- [7] R. Shuker, R.W. Gammon. Phys. Rev. Lett. 25, 222 (1970).
- [8] J.E. Smith, Jr., M.H. Brodsky, B.L. Crowder, M.I. Nathan, A. Pinczuk. Phys. Rev. Lett. 26, 642 (1971).
- [9] M.H. Brodsky. In: Light Scattering of Solids / Ed. by M. Cardona. Springer Verlag (1975). Ch. 5.
- [10] Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, Vol. 17: Semiconductors, Physics of II–VI Compounds / Ed. O. Madelung. Springer– Verlag, Berlin (1982).
- [11] В.И. Соколов. ФТП **28**, *4*, 545 (1994).
- [12] G. Grebe, G. Rousos, H.-J. Schulz, J. Lumin. 12, 701 (1976).
- [13] Light Scattering in Solids II / Eds M. Cardona and G. Güntherodt. Springer-Verlag (1982) [Рассеяние света в твердых телах. В. 2 / Под ред. П.А. Шелепина. Мир, М. (1984)].