О возможности существования экзо- и эндоэдральных $\eta^5 - \pi$ -комплексов фуллерена С₂₀ с переходыми металлами

© А.Л. Чистяков, И.В. Станкевич

Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, 119991 Москва, Россия

E-mail: stan@ineos.ac.ru

Методом функционала плотности в приближении PBE/3z.bas проведено моделирование структуры и электронного строения следующих комплексов фуллерена C₂₀: CpFe-C₂₀-FeCp, CpFe-C₂₀H₁₀-FeCp, H₅C₂₀-Fe-C₂₀H₅, C₂₀H₅-Fe-H₅C₂₀, C₂₀-Fe-C₂₀, Fe@C₂₀ и Cr@C₂₀.

Работа выполнена при финансовой поддержке Государственной научно-технической программы "Фуллерены и атомные кластеры" Российского фонда фундаментальных исследований (грант № 01-03-33216) и Миннауки (грант № 9.4.06).

Фуллерен С₂₀ (1) является наименьшим полиэдрическим кластером углерода среди фуллеренов, состоящих только из пяти- и шестичленных циклов. Из квантовохимических расчетов следует, что фуллерен $C_{20}(1)$ наиболее напряжен. Кроме того, в ряде работ прогнозируется, что такой кластер углерода должен иметь открытую электронную оболочку и является химически активной частицей [1-3]. Поэтому казалось, что фуллерен С₂₀ додекаэдрической формы вряд ли может существовать как индивидуальная частица. Однако совсем недавно этот фуллерен был получен химическими методами в газовой фазе [4]. Исходным продуктом являлся додекаэдран $C_{20}H_{20}$ (2) — насыщенная углеводородная молекула, синтезированная задолго до открытия фуллеренов [5]. В результате бромирования молекулы 2 было получено соединение $C_{20}HBr_{13}$ (3), которое затем превращалось в кластер 1. В силу высокой реакционной способности фуллерен 1 должен легко образовывать соединения различных типов, в том числе и экзо- и эндокомплексы η^n -типа с металлами.

Квантово-химическому дизайну структуры и электронного строения таких гипотетических систем и посвящено настоящая статья. В ней обсуждается возможность существования следующих производных фуллерена C_{20} : CpFe- C_{20} -FeCp (4), CpFe- $H_5C_{20}H_5$ -FeCp (5), H_5C_{20} -Fe- $C_{20}H_5$ (6), $C_{20}H_5$ -Fe- H_5C_{20} (7), C_{20} -Fe- C_{20} (8), Fe@C₂₀ (9) и Cr@C₂₀ (10). Расчеты проводились методом функционала плотности (DFT) в приближении PBE/3z.bas [6] по программе "Priroda" [7].

1) Фуллерен С₂₀. Расчеты показали, что основным состоянием фуллерена С₂₀ (1) является синглет 1a со структурой симметрии D_{3d} . Однако энергия нижнего триплетного состояния 1b отличается от синглетного всего на 1.8 kcal/mol и имеет также симметрию D_{3d} . Спиновая заселенность в нем локализована в основном на шести атомах (по 0.24 at. units на каждом), соседних с атомами, расположенными на оси симметрии третьего порядка. Состояние с мультиплетностью 5 имеет структуру симметрии C_{2h} и довольно высокую энергию (на 48 kcal/mol выше основного). Энергетические харак-

Молекула, комплекс	Обозна- чение	т	Сим- метрия	$-E_t/a.e.$	ZPVE kcal/mol	E_a (Fe- <i>pent</i> [*]), kcal/mol	$\frac{E_d (\text{Fe-}pent^*)}{\text{kcal/mol}}$
C ₂₀	1a	1	D_{3d}	760.8795	69.9	_	_
C ₂₀	1b	3	D_{3d}	760.7605	68.8	—	—
η ⁵ -CpFe-C ₂₀ -FeCp	4	1	D_{5d}	3574.7448	173.3	77.5	81.5
η ⁵ -CpFe–H ₅ C ₂₀ H ₅ -FeCp	5	1	D_{5d}	3681.0935	247.0	101.3	102.7
η^{5} -H ₅ C ₂₀ -Fe-C ₂₀ H ₅	6	1	D_{5h}	2791.6737	215.4	91.7	99.6
η^{5} -C ₂₀ H ₅ -Fe-H ₅ C ₂₀	7	1	D_{5h}	2791.5836	213.8	63.5	87.6
η^2 -C ₂₀ -Fe-C ₂₀	8	3	C_i	2785.3782	138.5	37.0	52.8
η^5 –Fe@C ₂₀	9a	1	C_{5v}	2024.2673	68.2	32.5^{a}	—
η^2 –Fe@C ₂₀	9b	3	C_{2v}	2024.2403	65.7	49.5 ^{<i>a</i>})	—
η^5 –Cr@C ₂₀	10a	1	C_{5v}	1805.0804	67.9	14.7^{a}	—
η^2 –Cr@C ₂₀	10b	3	C_{2v}	1805.0616	65.9	$25.5^{a)}$	—
FeCp ₂	11	1	D_{5h}	1650.3022	103.1	$97.9^{b)}$	135.3

Энергетические характеристики фуллерена С20 и его комплексов, полученные методом DFT-PBE/3z.bas

^{*a*)} Использованы значения: $E({}^{5}\text{Fe}) = -1263.4397$ arb. units $E({}^{7}\text{Cr}) = -1044.2243$ arb. units.

^{b)} Экспериментальное значение равно 76 kcal/mol.

 E_t — полные энергии, ZPVE — отклонение от полной энергии за счет учета нулевых колебаний ядер, $E_a(M-pent^*)$ — средняя энергия связи $M-pent^*$, $E_d(M-pent^*)$ — энергия гомолитической диссипации на два фрагмента, m — мультиплетность.

Структуры комплексов. a - 4 (R = -), 5 (R = H), b - 6 ($R_1 = -, R_2 = H$), 7 ($R_1 = H, R_2 = -$), 8 ($R_1 = R_2 -$), $c - C_{5v} - \eta^5 - M@C_{20}$ 9, $C_{2v} - \eta^2 - M@C_{20}$ 10.

теристики рассчитанных состояний *la* и *lb* кластера *l* приведены в таблице.

Расчеты анион-радикала C_{20}^- и катион-радикала C_{20}^+ позволили оценить сродство к электрону (2.3 eV) и потенциал ионизации (10.0 eV).

2) Экзоэдральные комплексы η^5 -типа. В результате оптимизации энергии комплексов 4–8 по геометрическим параметрам найдены локальные минимумы на соответствующих поверхностях потенциальной энергии. Им соответствуют структуры, представленные на рисунке. Полные энергии комплексов 4–8, а также энергии соответствующих η^5 -связей приведены в таблице. Расстояния Fe–C (C_{pent^*}) в них равны ~2.04 Å и близки к аналогичным значениям в FeCp₂ (11) (2.05 Å, совпадающим с экспериментальным).

Энергии η^5 -связей Fe–*pent*^{*} в комплексах 4–7 сопоставимы с энергией связи Fe–Cp в стабильной молекуле 11. Способ стабилизации η^5 -комплексов за счет введения дополнительных атомов H в α -положения относительно координируемой грани *pent*^{*}, предложенный ранее для фуллеренов C₆₀, C₇₀ и C₄₀ ([6], а также ссылки в работе [3]) и подтвержденный экспериментально [7], в исследуемом случае не столь эффективен, поскольку приводит к значительному удлинению некоторых связей в углеродном каркасе.

3) Эндоэдральные комплексы. При оптимизации энергии комплексов Fe@C₂₀ (9) и Cr@C₂₀ (10) по геометрическим параметрам для синглетных состояний найдены локальные минимумы, которым соответствуют структуры η^5 -типа 9a и 10a (рисунок) симметрии C_{5v} , а для триплетных состояний 9b и 10b (их энергии выше на 12–15 kcal/mol) структуры η^2 -типа симметрии C_{2v} . При этом расстояния M–C_{pent*} оказались значительно меньше, чем в комплексах FeCp₂ (2.05 Å) и CrCp₂ (2.15 Å), а именно: 1.80 (Fe–C_{pent*}) и 1.91 Å(Cr–C_{pent*}) для синглетных состояний, а для триплетных состояний еще короче: 1.837 (Fe–C[η^5]), 1.897 Å (Cr–C[η^2]). Отметим, что в результате такой координации происходит значительное увеличение (на ~ 0.2 Å) длин связей С–С в пятичленном цикле *pent**. Длины остальных связей С–С в полиэдрическом каркасе также увеличиваются. В таблице приведены значения энергии деструкции комплексов М@С₂₀ на кластер С₂₀ и атом М в основном состоянии. Эти энергии оказались отрицательными, но небольшими по модулю.

Авторы выражают благодарность Д.Н. Лайкову за предоставление программы "PRIRODA", высокую эффективность которой мы по достоинству оценили.

Список литературы

- [1] Д.А. Бочвар, Е.Г. Гальперн. Докл. АН СССР 209, 610 (1973).
- [2] G. Galli, F. Gygi, J.C. Golaz. Phys. Rev. **B57**, 1860 (1998).
- [3] А.Л. Чистяков, И.В. Станкевич. Изв. АН. Сер. хим. 2, 176 (2001).
- [4] H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gaitmont, D. Olevano, B.V. Issendorff. Nature 407, 60 (2000).
- [5] L.A. Paquette, R.J. Ternansky, D.W. Balogh, G.J. Kentgen. J. Amer. Chem. Soc. 105, 5446 (1983).
- [6] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 11, 3 865 (1996).
- [7] D.N. Laikov. Chem. Phys. Lett. 281, 151 (1997).