Кластерные *ab initio* расчеты для галогено-фуллеренов $C_{60}F_{24}$, $C_{60}CI_{24}$ и $C_{60}Br_{24}$

© О.Е. Квятковский, М.Г. Шеляпина*, Б.Ф. Щеголев**, Л.С. Воротилова***, И.Б. Захарова****

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Санкт-Петербургский государственный университет, 198904 Санкт-Петербург, Россия ** Институт физиологии им. И.П. Павлова Российской академии наук, 199034 Санкт-Петербург, Россия *** Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия **** Санкт-Петербург, Россия **** Санкт-Петербург, Россия **** Санкт-Петербург, Россия

E-mail: Kvyatkovskii@pop.ioffe.rssi.ru

С помощью кластерных *ab initio* расчетов изучены равновесная геометрия, электронная структура и колебательные свойства молекул C₆₀, C₆₀F₂₄, C₆₀Cl₂₄ и C₆₀Br₂₄.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 99-02-18170 и 00-02-16919).

В последнее время значительный интерес проявляется к свойствам легированных фуллеренов [1,2]. B paботах [3–8], посвященных галогено-фуллеренам $C_{60}X_n$ (X = F, Cl, Br), было обнаружено, что атомы галогенов изменяют характер химических связей углеродного каркаса и существенно влияют на оптические спектры этих соединений. В данной работе с использованием кластерных ab initio расчетов изучены равновесная геометрия, электронная структура и природа химической связи, а также колебательные спектры молекул С₆₀, С₆₀F₂₄, С₆₀Cl₂₄ и С₆₀Br₂₄. Оптимизация геометрии была выполнена в предположении, что атомы галогена занимают позиции "1,4" на поверхности фуллерена [4]. Эта структура реализуется для C₆₀Br₂₄ [4], однако для С₆₀F₂₄ и С₆₀Cl₂₄ более предпочтительной, по-видимому, является структура с заполнением позиций "1,2" [8]. Основываясь на результатах работ [4,9], мы выбрали для всех молекул точечную группу T_h. Расчеты выполнены с использованием версии PC GAMESS [10] пакета программ для квантово-химических расчетов GAMESS (US) QC package [11] с использованием базисного набора 3-21 G в рамках ограниченного метода Хартри-Фока (RHF).

В табл. 1 и 2 представлены параметры равновесной структуры, а также атомные заряды Милликена и значения порядков связей (bond orders). Квантово-химическое определение порядка связи приведено в [12]. Из табл. 1 видно, что в $C_{60}F_{24}$ атомы фтора заряжены отрицательно в соответствии с правилом электроотрицательностей Полинга, в то время как в $C_{60}Cl_{24}$ и $C_{60}Br_{24}$ атомы галогенов заряжены положительно, а атомы углерода C_1 играют роль анионов в противоречии с правилом Полинга. Наши расчеты показывают (см. табл. 2), что картина химических связей внутри углеродного каркаса в молекулах $C_{60}X_{24}$ существенно отличается от соответствующей картины для молекулы чистого фуллерена C_{60} , в соответствии с экспериментальными результатами [4] для $C_{60}Br_{24}$. Кроме того, найдено, что при переходе от чистого фуллерена C_{60} к галогено-фуллеренам $C_{60}X_{24}$ сильно меняется характер одинарных и двойных связей внутри углеродного каркаса: порядок связи для одинарных связей убывает, а для двойных связей растет одновременно с уменьшением длин двойных связей. Это означает, что двойные связи в $C_{60}X_{24}$ становятся значительно сильнее и более локализованными, чем в чистом фуллерене. Эти результаты находятся в качественном

Таблица 1. Атомные заряды Милликена и расстояния от атомов до центра фуллерена

Соединение	Атом	Заряд Милликена	$R_0, Å$
C ₆₀	$\begin{array}{c} C_1\\ C_2\\ C_3 \end{array}$	-0.000017 0.000016 0.000009	3.52(Expt: 3.5)
C ₆₀ F ₂₄	$F \\ C_1 \\ C_2 \\ C_3$	-0.329 0.240 0.082 0.048	5.145 3.766 3.574 3.406
C ₆₀ Cl ₂₄	$\begin{array}{c} C_3 \\ C_1 \\ C_2 \\ C_3 \end{array}$	0.048 0.160 -0.555 0.262 0.265	5.597 3.740 3.551 3.435
C ₆₀ Br ₂₄	$Br \\ C_1 \\ C_2 \\ C_3$	0.221 -0.623 0.263 0.271	5.722 3.745 3.537 3.433

Примечание. Атомы C_1 занимают позиции C_1 и C_4 , атомы C_2 — позиции C_5 и C_6 , атомы C_3 — позиции C_2 и C_3 в обозначениях работы [4]. R_0 — расстояние от атома до центра фуллерена.

Соеди- нение	Связь	Длина связи Å	Порядок связи
C ₆₀	$C_{1}-C_{2,3} \\ C_{3}-C_{3} \\ C_{2}=C_{2} \\ C_{1}=C_{3}$	1.45 (Expt: 1.44 [2]) 1.37 (Expt: 1.39 [2])	1.13 1.48
C ₆₀ F ₂₄	$C_1 - C_n$ $C_n = C_n$ $C_1 - F$	$\begin{array}{c} 1.53_{1-2}, 1.52_{1-3}, 1.50_{1-3}\\ 1.31_{2-2}, 1.31_{3-3}\\ 1.385 \end{array}$	$\begin{array}{c} 0.85_{1-2}, 0.82_{1-3}, 0.81_{1-3} \\ 1.89_{2-2}, 1.83_{3-3} \\ 0.96 \end{array}$
C ₆₀ Cl ₂₄	$C_1 - C_n$ $C_n = C_n$ $C_1 - C1$	$\begin{array}{c} 1.51_{1-2}, 1.51_{1-3}, 1.49_{1-3}\\ 1.31_{2-2}, 1.32_{3-3}\\ 1.86\end{array}$	$\begin{array}{c} 0.87_{1-2}, 0.86_{1-3}, 0.85_{1-3} \\ 1.92_{2-2}, 1.84_{3-3} \\ 1.05 \end{array}$
C ₆₀ Br ₂₄	$C_1 - C_n$ $C_n = C_n$	$\begin{array}{c} 1.51_{1-2}, 1.51_{1-3}, 1.49_{1-3} \\ (Expt: 1.50 \ [4]) \\ 1.31_{2-2}, 1.32_{3-3} \\ (Expt: 1.34 \ [4]) \\ 1.98 \ (Expt: 1.34 \ [4]) \\ \end{array}$	$0.87_{1-2}, 0.86_{1-3}, 0.86_{1-3}$ $1.92_{2-2}, 1.84_{3-3}$ 1.02
	C_1 –Br	1.98 (Expt: 1.99 [4])	1.02

Таблица 2. Длины и значения порядков соответствующих связей в молекулах фуллерена и галогено-фуллеренов

согласии с результатами квантово-химических расчетов [13]. В качестве теста для пригодности используемого нами метода были выполнены расчеты колебательного спектра для чистого фуллерена C₆₀. Найденные нами частоты и интенсивности четырех ИК мод симметрии T_{1u} (575, 610, 1242, 1549 сm⁻¹ и 1.01, 0.14, 0.29, 0.36 Debye²/Å² а.m.u. соответственно) находятся в удовлетворительном согласии с результатами *ab initio* расчетов методом DEPT [8] и экспериментом [14]. На рисунке представлены ИК спектры для C₆₀F₂₄, C₆₀Cl₂₄ и C₆₀Br₂₄. Из сравнения частей рисунка *с* и *d* видно, что рассчитанный ИК спектр для C₆₀Br₂₄ удовлетворительно передает структуру экспериментального ИК спектра для C₆₀Br₂₄ [4].

Перечислим наиболее интересные особенности рассчитанных спектров.

1) Спектры $C_{60}Cl_{24}$ и $C_{60}Br_{24}$ похожи, заметно отличаясь от спектра $C_{60}F_{24}$ для частот ниже 1500 сm⁻¹.

2) В спектрах всех молекул $C_{60}X_{24}$ имеется щель в области частот 1500–1800 сm⁻¹.

3) В области высоких частот $1800-2000 \text{ cm}^{-1}$ спектры всех молекул C₆₀X₂₄ формируются из колебаний двойных связей (включают только колебания атомов C₂ и C₃). Всего в этой области имеется восемь мод (без учета вырождения), из них три ИК моды. Это находится в соответствии с результатами теоретико-группового анализа и экспериментальными данными для C₆₀Br₂₄ [4].

4) В $C_{60}F_{24}$ выше 1400 сm⁻¹, в $C_{60}Cl_{24}$ выше 700 сm⁻¹ и в $C_{60}Br_{24}$ выше 450 сm⁻¹ все колебательные моды являются с большой точностью чисто углеродными (атомы галогенов не участвуют в этих колебаниях).

5) В $C_{60}Cl_{24}$ для частот ниже 140 cm^{-1} и в $C_{60}Br_{24}$ для частот ниже 100 cm^{-1} все колебательные моды с большой точностью являются чисто галогенными.

6) Все моды, связанные с изменением длин связей галоген-углерод (stretching carbon-halogen modes), и другие смешанные галоген-углеродные моды лежат в области частот $140-700 \text{ cm}^{-1}$ для $C_{60}\text{Cl}_{24}$ и $100-450 \text{ cm}^{-1}$ для $C_{60}\text{Br}_{24}$ соответственно.

Отметим, что вычисленные частоты примерно на 10% превосходят частоты экспериментального спектра. Одним из интересных следствий проведенного анали-

Колебательный ИК спектр молекул $C_{60}X_{24}$: *a, b, c* — расчеты (данная работа), *d* — эксперимент [4]. *a* — $C_{60}F_{24}$, *b* — $C_{60}Cl_{24}$, *c* и *d* — $C_{60}Br_{24}$.

за является то, что группа из семи наиболее интенсивных ИК мод, наблюдаемых в $C_{60}Br_{24}$ в диапазоне 550–1250 cm⁻¹, соответствует колебаниям углеродного каркаса. Таким образом, три ИК моды с симметрией T_{1u} , которые по симметрийным соображениям могут быть связаны с изменением длины связи бром-углерод [4,6], должны находиться в области частот 100–400 cm⁻¹.

Расчеты частично были выполнены с использованием высокопроизводительного вычислительного кластера Санкт-Петербургского государственного университета.

Список литературы

- [1] The Fullerenes / Ed. by H.W. Kroto, J.E. Fisher, D.E. Cox. Pergamon, Oxford (1993).
- [2] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [3] P.L. Birkett, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton. Nature 357, 479 (1992).
- [4] F.N. Tebbe, R.L. Harlow, D.B. Chase, D.L. Thorn, G.C. Campbell, J.C. Calabrese, N. Herron, R.J. Young, E. Wasserman. Science 256, 822 (1992).
- [5] P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, R.I. Grose, P.J. Hendra, P.W. Fowler. Chem. Phys. Lett. 205, 399 (1993).
- [6] M.R. Resmi, L. George, S. Singh, T. Pradeep, K.U. Sankar. J. Mol. Structure 435, 11 (1997).
- [7] M.F. Limonov, Yu.E. Kitaev, A.V. Chugreev, V.P. Smirnov, Yu.S. Grushko, S.G. Kolesnik, S.N. Kolesnik. Phys. Rev. B57, 7586 (1998).
- [8] P.J. Fagan, B. Chase, J.C. Calabrese, D.A. Dixon, R. Harlow, P.J. Krusic, N. Matsuzawa, F.N. Tebbe, D.L. Thorn, E. Wasserman. In Ref. [1]. P. 75.
- [9] P. Giannozzi, S. Baroni. J. Chem. Phys. 100, 8537 (1994).
- [10] A.A. Granovsky. www http: // classic.chem.msu.su / gran / games / index.html.
- [11] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem. 14, 1347 (1993).
- [12] I. Mayer. Theoret. Chim. Acta 67, 315 (1985); Int. J. Quantum Chem. 29, 73 (1986); ibid. 29, 477 (1986).
- [13] Yu.E. Kitaev, L.V. Laisheva, M.F. Limonov, R.A. Evarestov, A.V. Leko, V.A. Veryazov, Yu.S. Grushko, S.G. Kolesnik, S.N. Kolesnik. Mol. Mater. 7, 217 (1996).
- [14] P.C. Eklund, P. Zhou, K. Wang, G. Dresselhaus, M.S. Dresselhaus. In Ref. [1]. P. 221.