Изучение сольватов C₆₀F₄₈ с алканами методом ДСК

© Ю.А. Макеев, П.А. Трошин, О.В. Болталина, М.А. Кирикова, Н.В. Человская

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

E-mail: yves@online.debryansk.ru

Исследовано поведение в растворах алканов фторфуллерена $C_{60}F_{48}$ — соединения с максимальным содержанием фтора, которое может быть получено в чистом виде при прямом фторировании. Методами ДСК и термогравиметрии изучена динамика образования кристаллосольватов $C_{60}F_{48}$, находящихся в твердофазном равновесии с насыщенным раствором; определены их состав, температуры и энтальпии разложения. Установлено, что более устойчивы сольваты, формирующиеся при кристаллизации из насыщенных растворов в пентане, гексане и гептане, в то время как гексагональные сольваты (с октаном, нонаном, деканом и ундеканом) претерпевают разложения до исходного фторфуллерена и жидкого углеводорода при температурах ниже точек кипения последних.

1. Фторфуллерены $C_{60}F_n$ (n = 12-48) были впервые получены в 1990 г. [1] вскоре после разработки метода синтеза макроколичеств фуллеренов C_{60} и C_{70} [2]. Последующие работы, посвященные прямому фторированию [60]фуллерена в различных условиях, показали, что обычно образуются смеси продуктов. Первый селективный метод получения фторида фуллерена предложил Гах в 1994 г. [3]. Впервые образец с 68% содержанием фторида $C_{60}F_{48}$ был получен путем двухстадийного синтеза при взаимодействии C_{60} со фтором в присутствии фторида натрия при 280°С [4]. Недавно предложен синтез $C_{60}F_{48}$ путем прямого фторирования [60] фуллерена при 350°С.

Присоединение 48 атомов фтора к фуллереновому каркасу принципиально изменяет свойства соединения [5,6]. Фториды фуллеренов характеризуются выраженными электроноакцепторными свойствами и в отличие от алкилфторидов легко вступают в реакции нуклеофильного замещения. В то же время фториды [60] фуллерена хорошо растворимы в большом числе органических растворителей, что позволяет использовать их для получения многочисленных производных. Понимание характера взаимодействия молекул фторфуллеренов с растворителем важно для объяснения реакций типа S_N .

В нашей предыдущей работе [7] сообщалось о получении и рентгеноструктурном анализе сольватов, образованных *н*-алканами. Было обнаружено, что $C_{60}F_{48}$ образует ромбические изоструктурные сольваты состава 1:1 с пентаном, гексаном и гептаном, тогда как с ноаном, деканом и ундеканом образуются гексагональные кристаллосольваты.

Целью настоящей работы было исследование динамики образования кристаллосольватов C₆₀F₄₈, находящихся в твердой фазе в равновесии с насыщенным раствором, с использованием методов дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического анализа.

2. Использованный в работе образец фторфуллерена имел состав $C_{60}F_{48\pm1}$. Он содержал незначительные примеси $C_{60}F_{44}$, $C_{60}F_{46}$ и $C_{60}F_{48}$ О, содержание основного вещества составляло не менее 95%.

 $C_{60}F_{48}$ представляет собой белое мелкокристаллическое вещество, устойчивое на воздухе. При работе с ним не требуется применять специальных мер предосторожности.

Кристаллосольваты получались двумя способами: кристаллизацией из насыщенных растворов и помещением кристаллического фторида фуллерена в жидкий алкан, где он частично растворялся, а нерастворившаяся часть постепенно превращалась в сольват. Для определения температур и энтальпий разложения кристаллосольватов использовались статистические методы.

Комплексы, образуемые $C_{60}F_{48}$ с октаном, нонаном, деканом и ундеканом, разлагаются ниже температур кипения углеводородов, что позволило использовать метод ДСК для изучения их инконгруэнтного плавления. Опыты выполнялись следующим образом. Навеска фторида $C_{60}F_{48}$ (7–12 mg) помещалась в чашку ДСК с небольшим количеством растворителя (5–8 mg), после чего чашка закрывалась и хранилась при комнатной температуре. Калориметрические измерения повторяли многократно в течение 20 дней, достигая состояния, когда изменения энтальпии прекращались.

3. Нагревание исследуемых кристаллосольватов осуществлялось в атмосфере аргона (скорость нагрева 5°C/min), что приводило к разложению на $C_{60}F_{48}$ и углеводород. По уменьшению массы судили о составе сольватов. В работе использовалась установка Mettler TA3000, TG-50.

4. Характер разложения сольватов исследовался на аппаратуре Mettler TA3000, DSC-20. Анализируемые образцы помещались в алюминиевую кювету, которая закрывалась негерметично. Измерения осуществлялись в атмосфере аргона в интервале температур от 25 до 250°С (скорость нагрева составляла 5°С/min).

Появление на кривых ДСК пиков поглощения рассматривалось как свидетельство разложения сольватов на $C_{60}F_{48}$ и углеводород. Такие же выводы делались на основании потерь массы в экспериментах по термогравиметрии.

5. Изучаемые молекулярные комплексы могут быть подразделены на три группы: изоструктурные сольваты

Сольват	Упаковка	Параметры ячеек, nm	Схема разложения	Температура разложения, °С
$C_{60}F_{48} \cdot C_5H_{12}$	Орторобмическая	a = 5.925(3),	$C_{60}F_{48} \cdot C_5H_{12} \rightarrow C_{60}F_{48(s)} + C_5H_{12(g)}$	127.6
		b = 1.215(1),		
		c = 1.1987(4)		
$C_{60}F_{48}\cdot C_{6}H_{14}$	Орторобмическая	a = 3.876(4),	$C_{60}F_{48}\cdot C_6H_{14}\rightarrow C_{60}F_{48(s)}+C_6H_{14(g)}$	131.4
		b = 1.229(6),		
		c = 1.198(1)		
$C_{60}F_{48}\cdot C_7H_{16}$	Орторобмическая	a = 3.895(3),	$\mathrm{C_{60}F_{48}}\cdot\mathrm{C_7H_{16}}\to\mathrm{C_{60}F_{48(s)}}+\mathrm{C_7H_{16(g)}}$	111.3
		b = 1.228(1),		
		c = 1.197(4)		
$C_{60}F_{48}\cdot 2C_8H_{18}^*$	Гексагональная 1**	—	$C_{60}F_{48} \cdot nC_8H_{18} \rightarrow C_{60}F_{48(s)} + nC_8H_{18(l)}$	109
$C_{60}F_{48}\cdot 2C_9H_{20}$	Гексагональная 1	a = 2.362(3),	$\mathrm{C_{60}F_{48}}\cdot\mathrm{2C_9H_{20}}\rightarrow\mathrm{C_{60}F_{48(s)}}+\mathrm{2C_9H_{20(l)}}$	106
		b = 2.129(3)		
$C_{60}F_{48}\cdot 2C_{10}H_{22}$	Гексагональная 2**	a = 2.0924(5),	$C_{60}F_{48} \cdot 2C_{10}H_{22} \rightarrow C_{60}F_{48} \cdot C_{10}H_{22(s)} + C_{10}H_{22(l)}$	70.7
		c = 1.1991(6)		
$C_{60}F_{48}\cdot C_{10}H_{22}$	Аморфная		$\mathrm{C_{60}F_{48}}\cdot\mathrm{C_{10}H_{22}}\rightarrow\mathrm{C_{60}F_{48(s)}}+\mathrm{C_{10}H_{22(l)}}$	73.6
$C_{60}F_{48}\cdot 2C_{11}H_{24}$	Гексагональная 2	a = 2.0954(5),	$C_{60}F_{48} \cdot 2C_{11}H_{24} \rightarrow C_{60}F_{48} \cdot C_{11}H_{24(s)} + C_{11}H_{24(l)}$	107
		c = 1.2063(3)		
$C_{60}F_{48}\cdot C_{11}H_{24}$	Аморфная		$C_{60}F_{48}\cdot C_{11}H_{24} \rightarrow C_{60}F_{48(s)} + C_{11}H_{24(l)}$	107

Параметры ячеек и условия разложения сольватов C₆₀F₄₈

*Состав и структура кристаллосольвата с октаном предложены по аналогии с сольватом $C_{60}F_{48} \cdot 2C_9H_{20}$. **Гексагональная 1 — в случае $C_{60}F_{48} \cdot 2C_9H_{20}$, гексагональная 2 — в случае $C_{60}F_{48} \cdot 2C_nH_{2n+2}$ (n = 10, 11).

Кривые ДСК-разложения кристаллосольватов C₆₀F₄₈ с алканами при нагревании.

с *н*-пентаном, *н*-гексаном и *н*-гептаном, кристаллизующиеся в орторомбической системе, сольват с *н*-октаном кубической системы с сольваты с *н*-нонаном, *н*-деканом и *н*-ундеканом, кристаллизующиеся в гексагональной системы (см. таблицу).

Кроме того, исследовалась динамика процесса сольватации в равновесии с насыщенными растворами. Описанный в данной работе метод позволил нам наблюдать инконгруэнтное плавление в системах C₆₀F₄₈-октан и С₆₀F₄₈-нонан при 109 и 106°С соответственно. На этом основании нами был сделан вывод о том, что кристаллосольват C₆₀/F₄₈ с октаном должен иметь такую же, как и C₆₀F₄₈ · 2(нонан), гексагональную упаковку. Примечательно, что никаких дополнительных эффектов при температурах выше температур кипения растворителей в этом случае не обнаружено, и потеря внедренных молекул углеводородов происходит в одну стадию. В отличие от этого кристаллосольваты с деканом и ундеканом состава 1:2 разлагаются в две ступени. Можно сделать вывод о том, что изменения в кристаллической структуре, происходящие на пути от C₆₀F₄₈ · 2(нонан) к C₆₀F₄₈ · 2(декан) и к C₆₀F₄₈ · 2(ундекан), приводят к закономерному снижению температур разложения кристаллосольватов (см. рисунок).

В наших экспериментах показано, что описанные ранее орторомбические сольваты образуются при кристаллизации из насыщенных растворов. Они сравнительно устойчивы на воздухе и разлагаются при температурах, превышающих точки кипения соответствующих углеводородов. Гексагональные сольваты менее устойчивы и разлагаются при температурах ниже точек кипения углеводородов. Этот тип структуры возникает путем постепенного проникновения молекул алканов в решетку C₆₀F₄₈, что сопровождается изменением ее параметров.

Взаимосвязи между энтальпиями разложения и параметрами кристаллических решеток не обнаружено.

Список литературы

- H. Selig, C. Lifshitz, T. Peres, J.E. Fisher, A.R. Mc Gie, W.J. Romanov, J.P. Mc Cauley, A.B. Smith. J. Am. Chem. Soc. 113, 5475 (1991).
- [2] W. Krätchmer, L.D. Lamd, K. Fostiropoulos, D.R. Huffman. Nature 347, 354 (1990).
- [3] A.A. Gakh, A.A. Tuinman, J.L. Adcock, R.N. Compton. Tetrahedron Lett. 34, 7167 (1993).
- [4] O.V. Boltalina, L.N. Sidorov, V.F. Bagryantsev, V.A. Seredenko, A.S. Zapol'skii, J.M. Street, R.J. Taylor. J. Chem. Soc., Perkin Trans II 2275 (1996).
- [5] O.V. Boltalina, V.Y. Markov, R. Taylor, M.P. Waugh. Chem. Commun. 2549 (1996).
- [6] O.V. Boltalina, J.M. Street, R. Taylor. J. Chem. Soc., Perkin Trans II 649 (1998).
- [7] P.A. Troshin, Y.A. Mackeyev, N.V. Chelovskaya, Y.L. Slovokhotov, O.V. Boltalina, L.N. Sidorov. Fullerenes Sci. Technol. 8, 501 (2000).

515