## Термодинамические свойства полифуллеритов С<sub>60</sub>

## © Б.В. Лебедев, А.В. Маркин

Научно-исследовательский институт химии Нижегородского государственного университета им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

E-mail: lebedevb@ichem.unn.runnet.ru

Обсуждены результаты калориметрических исследований фуллеритов ID C<sub>60</sub> орторомбической, 2D C<sub>60</sub> тетрагональной и ромбоэдрической структур, а также графитоподобного полифуллерита — продуктов обработки исходного фуллерита C<sub>60</sub> давлениями от 1 до 8 GPa при температурах от 300 до 1270 К. Рассмотрены в основном данные измерений теплоемкости  $C_p^{\circ}$ , выполненных в адиабатических вакуумных калориметрах в области 5–350 К.

Работа выполнена при финансовой поддержке INTAS (код проекта 00-807), Российского фонда фундаментальных исследований (коды проектов 01-03-32061 и 00-03-40136) и Министерства науки и технологий Российской Федерации (решение от 15.01.1996).

Цель настоящей работы обсуждение результатов калориметрических исследований полифуллеритов C<sub>60</sub>, опубликованных в литературе к настоящему времени (табл. 1).

Температурные зависимости теплоемкости 1D  $C_{60}$  и 2D  $C_{60}$  (независимо от их кристаллической структуры) не имеют каких-либо особенностей: их теплоемкости плавно увеличиваются с ростом температуры. На зависимости  $C_p^{\circ}$  от *T* графитоподобного фуллерита  $C_{60}$  в интервале 49–66 К имеется небольшая аномалия теплоемкости, выражающаяся в положительном отклонении от ее нормальной зависимости в указанном интервале температуры (см. рисунок, кривая 4). В работе [4] высказано предположение о соответствии наблюдаемой аномалии некоторому релаксационному переходу типа "порядок-беспорядок". При T > 100 К теплоемкости 1D- и 2D-полимеров близки — различие

численных значений не превышает 0.7%. У графитоподобного фуллерита значения  $\mathrm{C}^\circ_p$  в интервале 70–180 К больше, а при T > 180 К меньше, чем у фуллеритов 1D C<sub>60</sub> и 2D C<sub>60</sub>. Однако различия теплоемкостей невелики, и при 300 К, например, они не превышают 1%. Иная картина наблюдается в области низких температур (см. рисунок). У изученных полифуллеритов отличаются не только величины  $C_n^{\circ}$ , но и характеры зависимости теплоемкости от температуры. Ясно, что это обусловлено различием гетеродинамичности изученных полимеров. Согласно теории теплоемкости твердых тел Тарасова [6], являющейся, как и теория теплоемкости Дебая, частным случаем фрактальной теории теплоемкости, для твердых тел цепной структуры зависимость C<sub>n</sub><sup>o</sup> от T при пониженных температурах пропорциональна  $T^{1}$ , слоистой структуры —  $T^2$ , пространственной —  $T^3$ .

|                                                  | Полифуллерить                                                                                 | J                                                                                         | T                                                    | δ,%           | Форма представления результатов измерений расчетов $C_p^{\circ} - T^*$ , ТТФ**                      | Литературные<br>ссылки |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------|------------------------|
| обозначения                                      | условия получения-<br>обработки исходно-<br>го С <sub>60</sub> : <i>p</i> , GPa; <i>T</i> , K | структура                                                                                 | Гемпературная<br>область изучения<br>теплоемкости, К |               |                                                                                                     |                        |
| 1 <i>D</i> C <sub>60</sub>                       | 5; 550<br>1.1; 500<br>1–1.2; 550–585                                                          | Орторомбический<br>— // —<br>— // —                                                       | 5–340<br>4–350<br>200–650                            | 0.2<br>1<br>- | $C_p^{\circ} - T, TT\Phi$ $C_p^{\circ} - T, \{S^{\circ}(T) - S^{\circ}(0)\} - T$ $C_p^{\circ} - T,$ | [1]<br>[2]<br>[3]      |
| 2D C <sub>60</sub>                               | 3.5; 960                                                                                      | Тетрагональный                                                                            | 5-340                                                | 0.2           | $C_p^{\circ} - T$ , TT $\Phi$                                                                       | [1]                    |
|                                                  | 8; 920                                                                                        | Ромбоэдрический                                                                           | 5-320                                                | 0.2           | $C_p^0 - T$ , TT $\Phi$                                                                             | [4]                    |
|                                                  | 2; 830                                                                                        | Ромбоэдрический<br>и тетрагональный                                                       | 4–350                                                | 1             | $C_p^{\circ} - T, \{S^{\circ}(T) - S^{\circ}(0)\} - T$                                              | [2]                    |
|                                                  | 2; 800                                                                                        | То же                                                                                     | 7–340,<br>250–600                                    | 1–1.5,<br>–   | $C_p^\circ - T$                                                                                     | [5]                    |
| Графито-<br>подобный<br>фуллерит С <sub>60</sub> | 8; 1270                                                                                       | Слоистая структура<br>из фрагментов раз-<br>рушенных молекул<br>фуллерита С <sub>60</sub> | 5–320                                                | 0.2           | $C_p^\circ - T$ , TT $\Phi$                                                                         | [4]                    |

Таблица 1. Основные сведения об изученных полифуллеритах С<sub>60</sub> и результатах их калориметрических исследований

 ${}^{*}C_{p}^{\circ} - T$  — график зависимости теплоемкости от температуры, а  $\{S^{\circ}(T) - S^{\circ}(0)\} - T$  — график зависимости энтропии от температуры. \*\*ТТФ — таблица термодинамических функций.



Теплоемкость полифуллеритов в области низких температур. *1* — 1*D* C<sub>60</sub> орторомбический, *2* — 2*D* C<sub>60</sub> тетрагональный, 3 — 2*D* C<sub>60</sub> ромбоэдрический, *4* — графитоподобный C<sub>60</sub>, 5 — фуллерит C<sub>60</sub>.

В фрактальной теории теплоемкости показатель степени при *T* в функции теплоемкости обозначается как *D* и называется фрактальной размерностью. Согласно [7,8], *D* можно оценить по экспериментальным данным о температурной зависимости теплоемкости по графику ln  $C_v$  or ln *T*, вполне обоснованно приняв, что при T < 50-60 K  $C_p^\circ = C_v$ . Значения *D*, полученные по экспериментальным данным о  $C_p^\circ$  для интервала 20–55 K у 1*D* C<sub>60</sub> (орторомбического) — 1,

2D C<sub>60</sub> (ромбоэдрического) — 1.5, 2D C<sub>60</sub> (тетрагонального) — 2 и у графитоподобного — 2.2. Получилось, что найденные фрактальные размерности подтверждают цепочечное строение фуллерита 1D C<sub>60</sub>, слоистое у 2D C<sub>60</sub> тетрагональной структуры; что касается фуллерита 2D C<sub>60</sub> ромбоэдрической структуры, то следует, по-видимому, считать, что он имеет слоистоцепную структуру, а графитоподобный фуллерит — некоторую промежуточную между слоистой и трехмерной.

**Таблица 2.** Термодинамические функции изученных полифуллеритов и исходного фуллерита  $C_{60}$  в расчете на моль  $C_{60}$  ( $M = 720.66 \text{ g} \cdot \text{mol}^{-1}$ ) при 298.15 К и стандратном давлении

| Полифуллериты                                         | $C_p^{\circ}(T),$<br>JK <sup>-1</sup> mol <sup>-1</sup> | $H^{\circ}(T) - H^{\circ}(0),$<br>kJmol <sup>-1</sup> | $S^{\circ}(T)$ ,<br>JK <sup>-1</sup> mol <sup>-1</sup> | $-[G^{\circ}(T) - H^{\circ}(0)],$<br>kJmol <sup>-1</sup> | Литературные<br>ссылки |
|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------|
| Исходный<br>фуллерит С <sub>60</sub> (ГЦК)            | 524.8                                                   | 72.44                                                 | 426.5                                                  | 54.72                                                    | [9]                    |
| 1D С <sub>60</sub><br>(орторомбический)               | 517.2                                                   | 60.63                                                 | 334.6                                                  | 39.12                                                    | [1]                    |
| 1 <i>D</i> C <sub>60</sub>                            | -                                                       | -                                                     | 365.7                                                  | -                                                        | [2]                    |
| 2D C <sub>60</sub><br>(тетрагональный)                | 514.5                                                   | 60.11                                                 | 321.5                                                  | 35.74                                                    | [1]                    |
| 2D C <sub>60</sub><br>(ромбоэдрический)               | 514.8                                                   | 57.51                                                 | 304.7                                                  | 33.30                                                    | [4]                    |
| 2D C <sub>60</sub> (тетрагональный + ромбоэдрический) | _                                                       | -                                                     | 334.1                                                  | -                                                        | [2]                    |
| Графитоподобный<br>фуллерит С <sub>60</sub>           | 495.5                                                   | 62.49                                                 | 382.0                                                  | 51.40                                                    | [4]                    |

В области низких температур зависимость  $C_p^{\circ}$  от T практически линейная для 1D C<sub>60</sub>, параболическая для 2D C<sub>60</sub> и близкая к кубической для графитоподобного фуллерита (см. рисунок). Для сравнения на рисунке приведена температурная зависимость теплоемкости исходного фуллерита C<sub>60</sub>. (кривая 5). Видно, что при T < 70 К теплоемкости фуллерита C<sub>60</sub> и полученных из него полифуллеритов сильно различаются. При понижении температуры до 5–6 К теплоемкости всех рассматриваемых объектов сближаются, а фрактальные размерности увеличиваются и при T < 10 К изменения C<sub>p</sub><sup>°</sup> 1D и 2D C<sub>60</sub> хорошо описываются дебаевской функцией теплоемкости, что соответствует предельному закону  $T^3$ . Для графитоподобного полифуллерита кубическая зависимость C<sub>p</sub><sup>°</sup> от T имеет место при более низких температурах.

По данным о  $C_p^{\circ} = f(T)$  рассчитаны термодинамические функции, для 298.15 К их значения приведены в табл. 2. Видно, что значения функций убывают от C<sub>60</sub> к 1D C<sub>60</sub> и 2D C<sub>60</sub> тетрагональному и ромбоэдрическому, в том числе и абсолютные значения функций Гиббса. Для графитоподобного фуллерита значения функций меньше, чем для исходного фуллерита, но больше, чем у изученных полифуллеритов (за исключением C<sub>p</sub><sup>°</sup> при 298.15 К). Энтропии соединений рассчитаны без учета нулевых энтропий S°(0), небольшие значения которых, по-видимому, имеются у всех рассмотренных объектов.

Как и ожидалось, значения уменьшения энтропии при превращении фуллерита  $C_{60}$  в рассмотренные полифуллериты располагаются в следующий ряд:  $\Delta S^{\circ}$  ( $C_{60} \rightarrow C_{60}$  графитоподобный)  $< \Delta S^{\circ}(C_{60} \rightarrow 1DC_{60}) < < \Delta S^{\circ}(C_{60} \rightarrow 2DC_{60,tetra}) < \Delta S^{\circ}(C_{60} \rightarrow 2DC_{60,rhomb}).$ 

## Список литературы

- B.V. Lebedev, K.B. Zhogova, N.N. Smirnova, V.V. Brazhlin, A.G. Lyapin. Thermochimica Acta. 364, 23 (2000).
- [2] A. Inaba, T. Matsuo, A. Fransson, B. Sundqvist. J. Chem. Phys. 110, 24, 12 226 (1999).
- [3] B. Sundqvist, O. Andersson, U. Edlund, A. Fransson, A. Inaba, P. Jacobsson, D. Johnels, P. Launois, C. Meingast, R. Moret, T. Moritz, P.-A. Persson, A. Soldatov, T. Wagberg. In Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. The Electrochemical Society Proceeding Series 3, 1014 (1996).
- [4] Б.В. Лебедев, К.Б. Жогова, В.Д. Бланк, Р.Х. Баграмов. Изв. РАН. Сер. хим. 2, 277 (2000).
- [5] B. Sundqvist, A. Fransson, A.Inaba, C. Meingast, P. Nagel, V. Pasler, B. Renker, T. Wagberg. In Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials 6, 705 (1998).
- [6] В.В. Тарасов. ЖФХ **24**, 111 (1950).
- [7] Т.С. Якубов. Докл. АН СССР 310, 145 (1990).
- [8] А.Д. Изотов, О.В. Шебершнева, К.С. Гавричев. Труды Всероссийской конференции по термодинамическому анализу и калориметрии. Казань (1996). С. 200.
- [9] Б.В. Лебедев, К.Б. Жогова, Т.А. Быкова, Б.С. Каверин, В.Л. Карнацевич, М.А. Лопатин. Изв. РАН. Сер. хим. 9, 2229 (1996).