Влияние межатомных расстояний на магнитное упорядочение соединений *R*MnSi (R = La, Y, Sm, Gd)

© С.А. Никитин, Т.И. Иванова, Ю.А. Овченкова, М.В. Масленникова, Г.С. Бурханов*, О.Д. Чистяков*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия * Институт металлургии им. А.А. Байкова Российской академии наук, 117334 Москва, Россия

E-mail: ivanova@rem.phys.msu.su

(Поступила в Редакцию 15 мая 2001 г.)

Выявлена зависимость характера магнитного упорядочения соединений *R*MnSi от расстояния d_{Mn-Mn} между атомами марганца внутри магнитных слоев, расположенных в плоскостях, перпендикулярных оси *с*. С этой целью были исследованы соединения SmMnSi и GdMnSi, для которых эти расстояния находятся вблизи критического значения d_{Mn-Mn} , разделяющего область ферромагнитного и антиферромагнитного упорядочения соединений *R*MnSi. Введение лантана и иттрия (которые соответственно увеличивают и уменьшают размеры кристаллической ячейки) в редкоземельную подрешетку приводит к появлению магнитных фазовых переходов в этих соединениях.

Работа поддержана Российским фондом фундаментальных исследований (грант № 00-02-17862) и Федеральной программой поддержки ведущих научных школ (грант № 00-15-96695).

Тройные силициды редкоземельных и переходных металлов представляют собой новый широкий класс магнитоупорядоченных веществ; в последнее десятилетие данные соединения привлекают к себе внимание многих исследователей [1-6]. Соединения RMnSi являются магнетиками с двумя магнитными подрешетками: подрешеткой редкой земли (R) и подрешеткой Mn, причем магнитные атомы располагаются в изолированных слоях, разделенных слоями Si и чередованием $R-Si-Mn_2-Si-R$. Подрешетка Mn, как правило, обладает существенным локализованным магнитным моментом $(1.5-3 \mu_R)$ и упорядочена при довольно высоких температурах. При рассмотрении магнитного упорядочения в данных составах необходимо учитывать различные типы обменных взаимодействий: R-R, R-Mn и Mn-Mn. Следует отметить, что характер магнитного упорядочения соединений RMnSi, а также величина и знак обменного интеграла внутри подрешетки Mn сильно зависят от межатомного расстояния Mn-Mn внутри магнитных слоев, расположенных в базисной плоскости тетрагональной кристаллической решетки. Например, для составов La_{1-x}Y_xMnSi с единственной магнитной подсистемой обнаружено, что при расстояниях внутри слоев Мп $d_{\rm Mn-Mn}$ > 2.88 Å происходит антиферромагнитное упорядочение внутри слоев Mn, а при $d_{Mn-Mn} < 2.85 \text{ Å}$ слои Mn упорядочены ферромагнитно. Кроме того, характер обменной связи между слоями Мп также коррелирует с межатомными расстояниями внутри слоев $d_{\rm Mn-Mn}$ [7].

Цель данной работы — выявление корреляции между межатомными расстояниями $d_{\rm Mn-Mn}$ как внутри слоев Mn, так и между слоями Mn и характером магнитного упорядочения соединений *R*MnSi (*R* = Sm и Gd) при замещениях в редкоземельной подрешетке.

1. Методика эксперимента и образцы

Сплавы соединений RMnSi (R = Sm, Y, La, Gd) были получены в электродуговой печи сплавлением шихты на медном водоохлаждаемом поду с вольфрамовым электродом в атмосфере очищенного аргона. Приготовленные сплавы подвергались гомогенизирующему отжигу в вакуумированных кварцевых ампулах при температуре 800-850°C в течение 100-150 часов. Химический состав соединений определялся методом рентгенофлюоресцентного анализа. Однофазность соединений контролировалась рентгеновским методом с помощью дифрактометра ДРОН-3 с использованием CuK_a-излучения. Анализ дифрактограмм порошков показал, что исследуемые поликристаллические соединения однофазны и имеют простую тетрагональную структуру типа CeFeSi. Параметры решетки образцов рассчитывались по дифрактограммам с точностью $\Delta a = \pm 0.001 \text{ Å},$ $\Delta c = \pm 0.003$ Å.

В настоящей работе проводились измерения удельной намагниченности исследуемых соединений в статических магнитных полях (до 13.5 kOe) в интервале температур 77–350 К. Методика измерений подробно описана в [8].

2. Экспериментальные результаты

Для решения поставленной задачи были проведены исследования образцов соединений SmMnSi и GdMnSi с замещениями гадолиния и самария немагнитными ред-коземельными элементами иттрием и лантаном.

Ферримагнитное упорядочение GdMnSi при температурах ниже температуры Кюри, равной 310 К (рис. 1), было обнаружено ранее при исследовании температурной и полевой зависимостей удельной намагниченнос-

Рис. 1. Температурные зависимости намагниченности соединений $Gd_{0.5}La_{0.5}MnSi$ в поле 2 kOe, GdMnSi и $Gd_{0.7}Y_{0.3}MnSi$ в поле 1.5 kOe.

ти σ [1]. В области T_c наблюдается линейная зависимость H/σ от σ^2 , характерная для ферримагнитного и ферромагнитного упорядочений. Этот экспериментальный факт позволяет сделать вывод о ферримагнитном упорядочении магнитных моментов подрешеток Mn и Gd при $T < T_c$.

Замещение гадолиния лантаном существенно изменяет магнитные фазовые переходы в соединениях $La_{1-x}Gd_xMnSi$. Hanpumep, $La_{0.5}Gd_{0.5}MnSi$ демонстрирует два перехода: антиферромагнетизм-ферримагнетизм при T₁ = 100 К и ферримагнетизм-парамагнетизм при $T_{c} = 180 \,\mathrm{K}$ (рис. 1). При увеличении концентрации гадолиния (x > 0.5) магнитный момент подрешетки гадолиния возрастает, в то время как обменное взаимодействие между ионами Gd и Mn остается антиферромагнитным. Это приводит к разрушению антиферромагнитной обменной связи между подрешетками Mn, магнитный момент которых ориентируется антипараллельно магнитному моменту подрешетки Gd. Таким образом, взаимодействие подрешеток Mn и Gd приводит к ферримагнитному упорядочению соединения $Gd_xLa_{1-x}MnSi$. Появление антиферромагнетизма у составов с 0.5 < x < 0.6, по-видимому, связано с тем, что при понижении температуры (при $T < T_1$) отрицательное обменное взаимодействие между слоями Mn превышает обменное взаимодействие между слоями Mn и Gd, вследствие чего ниже T₁ возникает антиферромагнитное упорядочение подрешеток марганца. Существование положительной парамагнитной температуры Кюри θ_p указывает на преобладание положительного обменного взаимодействия внутри слоев Mn и Gd над отрицательным обменом между слоями.

Замещение гадолиния иттрием (соединение $Gd_{0.7}Y_{0.3}MnSi$) приводит к уменьшению намагниченности. Как видно, характер кривых температурной зависимости намагниченности подобен $\sigma(T)$ для GdMnSi, хотя точка перегиба на кривых отсутствует. Можно заключить, что малые добавки иттрия не изменяют в

основном характер магнитного упорядочения соединения $Gd_{0.7}Y_{0.3}MnSi$, которое остается ферримагнетиком при $T < T_c = 260$ K.

Далее рассмотрим температурные зависимости намагниченности соединений $Sm_{1-x}R_xMnSi$ с R = La, Y, измеренные в магнитном поле H = 10 kOe (рис. 2).

Комплексные исследования кристаллических, магнитных и электрических свойств соединения SmMnSi представлены в работе [9]. Температурная зависимость намагниченности данного состава демонстрирует аномальное поведение, которое характеризуется большим температурным гистерезисом, двумя магнитными фазовыми переходами и точкой магнитной компенсации (рис. 2, a). Эти аномалии также проявляются на температурных зависимостях удельного электросопротивления и теплового расширения. Объяснение такого поведения намагниченности можно дать на основе модели, в соответствии с которой при $T < T_N$ ($T_N = 240 \,\mathrm{K}$) возникает слабый ферромагнитный момент подрешетки Mn µ_{Mn}, который индуцирует магнитный момент подрешетки Sm $\mu_{\rm Sm}$ с ориентацией, противоположной $\mu_{\rm Mn}$. Величина магнитного момента $\mu_{\rm Sm}$ возрастает при пониже-

Рис. 2. Температурные зависимости намагниченности соединений SmMnSi, $\text{Sm}_{0.8}\text{Y}_{0.2}$ MnSi и $\text{Sm}_{0.8}\text{La}_{0.2}$ MnSi.

Соединение	a,Å	$c, \mathrm{\AA}$	$d_{ m Mn-Mn}$, Å	Тип и температуры магнитного упорядочения	
Sm _{0.8} La _{0.2} MnSi	4.051 (4)	7.198 (6)	2.864	АФМ	$T_N \approx 195 \mathrm{K}$
SmMnSi	4.044 (4)	7.159(7)	2.860	АФМ	$T_1 = 130 {\rm K}$
				Угловая фаза	$T_{N} = 250 \text{K}$
Sm _{0.8} Y _{0.2} MnSi	4.033 (2)	7.133 (6)	2.852	АФМ	$T_1 = 115 \mathrm{K}$
0.0 0.2				Угловая фаза	$T_{N} = 205 \text{K}$
Gd _{0.5} La _{0.5} MnSi	4.11	7.275	2.906	АФМ	$T_1 = 100 \text{K}$
0.0 0.0				ФМ	$\dot{T_{C}} = 180 \text{K}$
Gd _{0.7} Y _{0.3} MnSi	4.052	7.005	2.865	ФМ .	$T_{C} = 260 \text{K}$
$Gd_0 Sm_0 MnSi$	4.013 (4)	7.172(7)	2.838	ФМ	$T_{C} = 295 \text{K}$
GdMnSi	4.016(1)	7.160(1)	2.840	ФМ	$\tilde{T_C} = 310 \text{K}$

Параметры кристаллической ячейки a и c, межатомные расстояния внутри слоев Mn d_{Mn-Mn} , тип и температуры магнитного упорядочения исследованных соединений RMnSi (R = La, Y, Sm, Gd)

нии температуры быстрее, чем µ_{Mn}. При температуре $T_k = 215 \,\mathrm{K} \,\,\mu_{\mathrm{Sm}}$ оказывается равным μ_{Mn} , в результате чего возникает компенсация магнитного момента соединения. Понижение температуры приводит к резкому уменьшению коэрцитивности данного состава. Внешнее магнитное поле 10 kOe недостаточно для перемагничивания образца в интервале температур 130–220 К, и магнитный момент в этом поле становится отрицательным. В районе $T < 130 \, \text{K}$ в результате антиферромагнитного упорядочения подрешеток Mn происходит фазовый переход 1 рода в антиферромагнитную фазу с нулевым спонтанным магнитным моментом. Для выявления корреляции знака интеграла обменного взаимодействия в подрешетках марганца и величины межатомных расстояний *d*_{Мп-Мп} были определены параметры тетрагональной кристаллической решетки, тип и температуры магнитного упорядочения исследованных составов (см. таблицу).

Введение Y (состав Sm_{0.8}Y_{0.2}MnSi) приводит к небольшому уменьшению межатомных расстояний. Характер магнитного упорядочения данного состава близок к зависимости для исходного состава SmMnSi, а температуры магнитных фазовых переходов от антиферромагнитной фазы к неколлинеарной (T_1) и из неколлинеарной антиферромагнитной фазы в парамагнитную (T_N) несколько смещаются в область низких температур (рис. 2). Широкого температурного гистерезиса с отрицательными значениями намагниченности, характерного для соединения SmMnSi, в магнитном поле 10 kOe для состава Sm_{0.8}Y_{0.2}MnSi обнаружить не удалось.

Исследование магнитных свойств состава $Sm_{0.8}La_{0.2}MnSi$ показало, что это соединение является антиферромагнетиком с максимумом намагниченности и восприимчивости при температуре Нееля $T_N = 195$ К.

Обсуждение экспериментальных результатов

Сопоставление результатов исследования магнитных свойств и кристаллической структуры соединений *R*MnSi показывает зависимость характера магнитного упорядо-

чения от межатомных расстояний $d_{\rm Mn-Mn}$ внутри слоев Mn, расположенных в базисных плоскостях, перпендикулярных тетрагональной оси с (см. таблицу). Для составов SmMnSi и GdMnSi эти расстояния находятся вблизи критического значения d_{Mn-Mn}, разделяющего область ферромагнитного и антиферромагнитного упорядочений соединений RMnSi. Например, соединения SmMnSi и Sm_{0.8}Y_{0.2}MnSi, межатомные расстояния которых больше критического, обладают антиферромагнитным упорядочением при температурах $T < T_N$. Можно предположить, что в замещенных соединениях Sm_{0.8}Y_{0.2}MnSi и Sm_{0.8}La_{0.2}MnSi в области низких температур T < 77 K возникает магнитное упорядочение, в котором сосуществуют две составляющие магнитного момента иона марганца µ_{Mn}: одна компонента направлена вдоль тетрагональной оси [001], другая расположена в базисной плоскости (001), что, возможно, приводит к возникновению неколлинеарной структуры в этих составах.

Для составов GdMnSi, $Gd_{0.7}Y_{0.3}MnSi$ и $Gd_{0.7}Sm_{0.3}MnSi$ расстояние d_{Mn-Mn} меньше критического (2.85 Å), для них характерно ферримагнитное упорядочение с высокими значениями намагниченности.

При замещении гадолиния лантаном увеличивается расстояние $d_{\rm Mn-Mn}$ и усиливается антиферромагнитное обменное взаимодействие внутри марганцевой подсистемы, в результате чего в замещенных составах La_{1-x}Gd_xMnSi при x < 0.5 наблюдаются два перехода: парамагнетизм-ферримагнетизм при температуре Кюри T_c и при дальнейшем понижении температуры переход ферримагнетизм-антиферромагнетизм (температура T_1). Например, для состава La_{0.5}Gd_{0.5}MnSi $d_{\rm Mn-Mn}$ оказывается равным 2.906 Å (больше критического 2.85 Å), что приводит к возникновению антиферромагнитного состояния в области низких температур при T < 100 K.

В соединениях с магнитной редкоземельной подрешеткой существенное влияние на магнитное упорядочение должно оказывать взаимодействие между редкоземельной и марганцевой подрешетками (*R*-Mn). Поскольку разность между обменной энергией подрешеток Mn в антиферромагнитном и ферримагнитном состояниях является небольшой, то возрастающее с понижением температуры обменное взаимодействие *R*—Mn приводит к магнитным фазовым переходам ферромагнетизм–антиферромагнетизм.

Список литературы

- С.А. Никитин, О.В. Некрасова, И.Т. Иванова, Ю.Ф. Попов, Р.С. Торчинова. ФТТ 33, 6, 1640 (1991).
- [2] R. Welter, G. Venturini, B. Malaman. J. Alloys Compounds 206, 55 (1994).
- [3] R. Welter, G. Venturini, E. Ressouche, B. Malaman. J. Alloys Compounds **210**, 273 (1994).
- [4] A. Szytula. Crystall structures and magnetic properties of RTX rare earth intermetallics. Jagiellonian University Press, Krakov, Poland (1998). 82 p.
- [5] S.A. Nikitin, T.I. Ivanova, I.A. Tskhadadze, K.P. Skokov, I.V. Telegina. J. Alloys Compounds 280, 1, 16 (1998).
- [6] S.A. Nikitin, I.A. Tskhadadze, A.V. Morozkin, Yu.D. Seropegin. J. Magn. Magn. Mater. **196**, *1*, 632 (1999).
- [7] I. Ijjaali, R. Welter, G. Venturini, B. Malaman, E. Ressouche. J. Alloys Compounds 270, 63 (1998).
- [8] Ю.А. Овченкова. Дисс. канд. физ.-мат. наук. МГУ, М. (2000).
- [9] S.A. Nikitin, I.A. Tskhadadze, M.V. Makarova, A.V. Morozkin. J. Phys. D: Appl. Phys. 32, 6, L23 (1999).