Циклотронный резонанс и эффект де Гааза–ван Альфена в органическом проводнике (BEDT-TTF)₈Hg₄Cl₁₂(C₆H₅Cl)₂

© И.Б. Воскобойников, С.В. Демишев, Р.Н. Любовская*, В.В. Мощалков**, Н.А. Самарин, Н.Е. Случанко

Институт общей физики Российской академии наук,

117942 Москва, Россия

*Институт проблем химической физики Российской академии наук,

142432 Черноголовка, Московская обл., Россия

** Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven,

B-3001 Leuven, Belgium

(Поступила в Редакцию 15 мая 2001 г.

В окончательной редакции 28 июня 2001 г.)

В области температур 0.33-1.44 К при значениях магнитных полей $B \leq 50$ Т выполнены измерения эффекта де Гааза–ван Альфена для квазидвумерного органического проводника (BEDT-TTF)₈Hg₄Cl₁₂(C₆H₅Cl)₂. Анализ квантовых осцилляций с учетом данных циклотронного резонанса, полученных для частотного интервала 40-120 GHz, позволил установить, что сложный спектр квантовых осцилляций образован фундаментальными частотами $\alpha \sim 256$ Т и $\beta \sim 670-610$ Т, а также комбинационными и кратными частотами. Показано, что характер температурной перестройки осцилляционного спектра может быть интерпретирован в рамках модели, учитывающей наличие магнитного фазового перехода при $T_c \sim 0.9$ К и близость основной частоты α с эффективной массой $m^* = 1.48m_0$ к условию спинового демпинга.

Работа поддержана программами Министерства промышленности, науки и технологий "Физика микроволн" и "Фундаментальная спектроскопия". Эксперименты в Католическом университете г. Левена (Бельгия) выполнены при поддержке программ GOA и FWO-Vlaandren.

Настоящая работа посвящена исследованию основного состояния органического проводника из семейства (BEDT-TTF)₈Hg₄X₁₂(C₆H₅Y)₂, где BEDT-TTF — бис(этилен ди тио)тетратиафульвален и X, Y = Cl или Br. Для простоты в дальнейшем будет использоваться обозначение различных соединений вида (X–Y): например, (Cl–Cl) соответствует (BEDT-TTF)₈Hg₄Cl₁₂(C₆H₅Cl)₂ и т.д.

Соединения (BEDT-TTF)₈Hg₄X₁₂(C₆H₅Y)₂ обладают слоистой структурой и двумерной проводимостью, связанной со слоями молекул BEDT-TTF [1–6]. Низкотемпературное поведение данных органических проводников существенно зависит от химического состава: в то время как для (Br–Br) и (Br–Cl) характерен переход металл–диэлектрик при понижении температуры, в случае (Cl–Cl) и (Cl–Br) основное состояние остается металлическим вплоть до гелиевых температур [1–6]. Для (Cl–Cl) и (Cl–Br) были обнаружены квантовые осцилляции Шубникова–де Гааза (ШГ) и де Гааза–ван Альфена (ГА) [6–9], что делает эти материалы перспективными для фермиологических исследований.

В пионерской работе [7] сообщалось о сложной структуре осцилляций ШГ, наблюдавшихся у образцов (Cl–Cl) в диапазоне магнитных полей $B \leq 16$ Т. При $T \sim 1.4$ К спектр состоял из шести частот: $F_1 = 150$ Т, $F_2 = 250$ Т (доминирующая), $F_3 = 400$ Т, $F_4 = 500$ Т, $F_5 = 650$ Т и $F_6 = 910$ Т, условия наблюдения которых зависели от направления измерительного тока относительно кристаллографических осей. В то же время измерения эффекта ГА показали, что осцилляционный спектр ГА является более бедным и для B < 14 Т состоит из трех частот F_2 , F_4 , F_5 . Расширение интервала полей до $B \sim 35$ Т позволило также зарегистрировать ряд

особенностей в спектрах осцилляций ШГ с частотами, превышающими 1000 Т [9].

Наблюдения сложного спектра осцилляций трудно согласовать с теоретической моделью [10], согласно которой поверхность Ферми состоит из двух цилиндров, сечения которых имеют приблизительно равные площади. Возможное объяснение, предложенное в [9], состоит в том, что часть частот в спектрах имеет комбинационную природу, например, вследствие магнитного пробоя или магнитного взаимодействия [11].

Другим неясным моментом является величина эффективной массы носителей тока в (Cl–Cl). Из температурной зависимости амплитуды осцилляций ШГ было получено значение $m^* = 1.35m_0$ [7], существенно отличающееся от величины $m^* = 1.9m_0$, следующей из оптических экспериментов [12].

Для выяснения природы указанных, противоречий в настоящей работе были выполнены измерения эффекта ГА в магнитном поле до 50 Т для температур 0.33–1.44 К, а также циклотронного резонанса (ЦР) в миллиметровом диапазоне длин волн. Полученные данные позволяют предложить возможное объяснение как природы сложного спектра осцилляций для образцов (Cl-Cl), так и особенностей его температурной перестройки.

1. Методика эксперимента

Для измерений эффекта ГА использовались монокристаллы с характерным размером $1 \times 1 \times 0.5$ mm, а для измерений ЦР — монокристаллы размером $3 \times 3 \times 0.5$ mm. С помощью каждой методики тестировалось несколько

образцов, каждый из которых продемонстрировал идентичное поведение.

Методика синтеза и структура образцов описаны в [1]. В экспериментах по ЦР и эффекту ГА магнитное поле было направлено перпендикулярно плоскостям, в которых движутся двумерные носители.

Исследования эффекта ГА были выполнены на установке импульсного магнитного поля в Католическом университете г. Левена (Бельгия) [13]. Магнитные свойства в импульсном магнитном поле до 50 Т изучались индукционным методом [11], длительность импульса составляла 20 пs. Температурные измерения в интервале 0.33–1.44 К проводились с помощью криостата He³.

Магнитные свойства в сильном импульсном поле были исследованы для трех кристаллов образцов (Cl–Cl); все они продемонстрировали одинаковую картину квантовых осцилляций. С целью уменьшения случайной погрешности и проверки воспроизводимости экспериментальных данных для каждой фиксированной температуры импульсные измерения повторялись несколько раз, в том числе с различной амплитудой импульсного поля (10, 20, 30, 40 и 50 T). В этих опытах абсолютная точность воспроизводимости сигнала с приемных катушек была не хуже 0.3%, причем погрешность главным образом была связана со смещением базовой линии, а осциллирующая часть в пределах ошибки не зависела от амплитуды импульса и не менялась при повторных импульсах одинаковой амплитуды.

ЦР исследовался в Институте общей физики РАН с помощью магнитооптического спектрометра миллиметрового диапазона оригинальной конструкции. Излучение в интервале частот 40-120 GHz создавалось с помощью ЛОВ-генераторов; в качестве чувствительного элемента использовался угольный болометр, находившийся в тепловом контакте с образцом. Как было показано ранее [14,15], такая схема измерений позволяет регистрировать поглощаемую мощность в образце P(B) как функцию магнитного поля. Для повышения чувствительности при измерении кристаллов (Cl-Cl) в тракт излучения помещались два идентичных болометра, включенные по мостовой схеме, на одном из которых располагался образец, а другой оставался свободным. Такая схема включения датчиков существенно подавляла нестабильности, связанные с неконтролируемыми флуктуациями температуры, и позволяла увеличить чувствительность к отклику от образца приблизительно в 10-15 раз по сравнению с уровнем чувствительности, достигнутым ранее в [14,15]. Кроме того, мостовая схема оказалась весьма удобной для проведения температурных измерений в интервале 1.7-4.2 K.

Циклотронный резонанс в кристаллах (BEDT-TTF)₈Hg₄Cl₁₂(C₆H₅Cl)₂

Поскольку используемая методика регистрации ЦР предполагает, что не только образец, но и элементы измерительной ячейки подвергаются действию ми-

Рис. 1. Резонансное магнитопоглощение микроволнового излучения в образце (Cl–Cl) (a) и зависимость резонансного поля от частоты излучения (b).

кроволнового излучения, для выделения связанного с образцом резонансного магнитопоглощения P(B) проводились контрольные измерения $P_0(B)$ для ячейки без образца. Результат сравнения показан на рис. 1, *а*. Видно, что для частоты $\omega/2\pi = 100$ GHz внесение образца в ячейку приводит к появлению резонанса при $B_{\rm res} \sim 4.9$ T, в то время как резонанс при $B \sim 3.5$ T имеет ту же амплитуду, что и в пустой ячейке, и обусловлен ЭПР в материале болометров.

По наклону линейной зависимости $B_{res}(\omega)$ (рис. 1, *b*) была определена величина эффективной массы $m^* = (1.48 \pm 0.05)m_0.$ Указанное значение близко к полученному ранее из эффекта ШГ: $m^* = 1.35m_0$ [3]. Температурные зависимости параметров ЦР (амплитуды $\Delta P/P = P(B_{\rm res})/P_0(B_{\rm res}) - 1$ и времени релаксации τ , рассчитанного по ширине линии поглощения) представлены на рис. 2. Обращает на себя внимание тот факт, что амплитуда ЦР при уменьшении температуры вначале увеличивается, а затем для $T \le 2.6$ K начинает уменьшаться. Одновременно в области $T \le 3 \, {
m K}$ наблюдается сильное (почти в 3 раза) убывание времени релаксации т.

Таким образом, в образцах (Cl-Cl) происходит ухудшение условий наблюдения ЦР при понижении темпе-

Рис. 2. Температурная зависимость амплитуды (1) и времени релаксации (2) циклотронного резонанса.

ратуры (параметр $\omega \tau$ уменьшается). Данное поведение является аномальным, поскольку в органических металлах, исследованных ранее [14,15], как и в обычных металлах и полупроводниках, понижение температуры приводит не к уменьшению, а к росту ЦР-поглощения.

Эффект де Гааза–ван Альфена в (BEDT-TTF)₈Hg₄Cl₁₂(C₆H₅Cl)₂

Индукционная методика в экспериментах в импульсном магнитном поле позволяет регистрировать производную магнитного момента (dM/dB) = f(B) [11]. Экспериментальные данные dM/dB для образца (Cl–Cl) при различных температурах показаны на рис. 3. При T = 1.44 K для $B \ge 15$ Т наблюдаются отчетливые квантовые осцилляции намагниченности, состоящие из нескольких частот (рис. 3, *a*). Понижение температуры до T = 0.9 K приводит к сильному подавлению амплитуды осцилляций (рис. 3, *c*). Дальнейшее уменьшение температуры приводит к восстановлению осцилляционной картины при $T \le 0.7$ K (рис. 3, *d*).

Интересно, что квантовые осцилляции ГА для $T \leq 0.7$ К наблюдаются только в области $B \geq B_c = 25$ Т и отсутствуют при $B \leq B_c$. При $B = B_c$ на кривой dM(B)/dB имеется максимум, характерный для магнитного перехода, сопровождающийся скачкообразным увеличением намагниченности образца (см. вставку на рис. 3, *d*). Поскольку в обычном случае амплитуда квантовых осцилляций возрастает при убывании температуры вследствие уменьшения размытия уровней Ландау [11], вероятно, что именно индуцированный понижением температуры магнитный переход в (Cl–Cl) может служить причиной аномального подавления амплитуды осцилляций при $T \sim T_c \sim 0.9$ К.

Действительно, уменьшение амплитуды осцилляций в области температур, близких к переходу, может объясняться, например, увеличением рассеяния на магнитных флуктуациях и обусловленным ими дополнительным уширением уровней Ландау. Отметим, что с этой гипотезой качественно согласуется тенденция к ухудшению условий наблюдения ЦР при понижении температуры (см. раздел 2).

Данные рис. З позволяют предположить, что образование фазы с новым типом магнитного упорядочения для $T < T_c$ приводит к сильному увеличению рассеяния носителей заряда, а "включение" сильного поля $B > B_c$ подавляет этот эффект и наблюдение осцилляций ГА вновь оказывается возможным. По-видимому, при $B > B_c$ происходит восстановление магнитного порядка, близкого к исходной высокотемпературной ($T > T_c$) фазе.

Отметим, что сильное влияние магнитного перехода на амплитуду и гармонический состав квантовых осцилляций ранее наблюдалось для сильно коррелированного металла PrCu₂ [16].

Для проверки сделанных предположений рассмотрим более подробно изменение частотных спектров осцилляций ГА. Для расчета спектров из кривых dM/dB вычиталась монотонная составляющая, а данные приводились к обратному магнитному полю. Прежде чем описать полученные результаты, заметим, что в случае сложного спектра осцилляций с близкими линиями положение каждой из особенностей может быть найдено лишь с определенной погрешностью. При этом ряд "линий", которые можно наблюдать в рассчитанных спектрах Фурье, не имеет устойчивого характера и существенно зависит от выбора функции окна. Например, для T = 1.44 K такие неустойчивые особенности лежат в областях 750-950 Т и 100-200 Т (рис. 4). В дальнейшем такие "частоты" рассматриваться не будут, и мы ограничимся обсуждением спектральных особенностей, положение которых воспроизводится при различных температурах и не зависит от способа обработки данных. Данные по значениям частот, определяющих спектры ГА при различных температурах, приведены на рис. 5 и сведены в таблицу.

Рассмотрим вначале результат для $T > T_c \sim 0.9 \,\mathrm{K}$ (рис. 4). Прежде всего для $T = 1.44 \,\mathrm{K}$ следует отметить

Рис. 3. Квантовые осцилляции намагниченности образца (Cl-Cl) при различных температурах.

хорошую корреляцию данных, приведенных в настоящей работе и полученных ранее из анализа осцилляций ШГ (на рис. 4, *а* частоты F_1-F_6 из работы [5] обозначены треугольниками). Как и в [5], для T = 1.44 К в спектре ГА доминирует частота $\alpha \approx F_2$, а также наблюдаются частоты $y \approx F_3$, $x \approx F_4$ и $\beta \approx F_5$. Вместе с тем в спектре осцилляций ГА отсутствуют частоты $F_1 \sim 150$ Т и $F_6 \sim 900$ Т, а также наблюдается новая

Рис. 4. Спектры квантовых осцилляций для образцов (Cl–Cl): $a - T > T_c, b - T < T_c.$ I_0 — амплитуда, F_n — частота осцилляций.

Рис. 5. Температурная перестройка основных частот в спектре квантовых осцилляций.

Частоты осцилляций для образца (Cl-Cl), полученные из эффекта де Гааза-ван Альфена

Область температур	Частота, Т				
	α	у	x	β	γ
$T > T_c$	256 ± 7	396 ± 8	515 ± 18	670 ± 33	
$T \sim T_c$	—	-	-	-	1008 ± 30
$T < T_c$	-	347 ± 4	515 ± 18	610 ± 12	

частота $\gamma \sim 1000$ Т. Уменьшение температуры в области 1.11 $\leq T \leq 1.44$ К приводит к подавлению вклада частот α и x по отношению к частотам y и β (рис. 4).

В области перехода $T \sim T_c \sim 0.9 \,\mathrm{K}$ в спектрах пропадают все частоты осцилляций, кроме частоты γ , которая наблюдается как для $T < T_c$, так и для $T > T_c$ (рис. 4).

При температурах ниже температуры перехода $T < T_c$ в спектрах отсутствует частота α (рис. 4), а также происходит некоторое уменьшение частот гармоник β и у при сохранении (в пределах ошибки) значений частот x и у (см. рис. 4, 5 и таблицу). Таким образом, данные анализа спектров осцилляций ГА указывают на то, что магнитный переход может, по-видимому, индуцировать изменение элементов поверхности Ферми у образца (Cl–Cl).

4. Обсуждение результатов

Из приведенного рассмотрения видно, что полученный в настоящей работе спектр осцилляций ГА при T = 1.44 К похож скорее на спектр осцилляций ШГ, чем на спектры ГА, полученные в [9] для $B \le 14$ Т. Одно из возможных объяснений расхождений состоит в том, что дополнительные частоты в наших спектрах возникают для *B* > 15 T и спектры осцилляций ШГ и ГА в действительности идентичны. Однако существует и другая возможность, связанная с тем, что при импульсных экспериментах в образце наводятся индукционные токи, модулированные осцилляциями магнитосопротивления ШГ. В свою очередь модулированный индукционный ток будет приводить к дополнительной составляющей сигнала в приемной катушке, не связанной с dM/dB. В результате квантовые осцилляции, регистрируемые в индукционном эксперименте, могут оказаться промежуточными между случаями чистых эффектов ШГ и ГА, что и отразится на характере наблюдаемых спектров. Из-за сильной температурной зависимости особенностей на рис. 4, 5 для окончательного вывода о "чистой" или "комбинированной" природе полученного в настоящей работе спектра ГА необходимы данные об осцилляциях ШГ в области температур T < 1 К.

Однако независимо от природы расхождений между различными вариантами измерений эффекта ГА основной проблемой в интерпретации осцилляционных данных является вопрос о том, как совместить сложный осцилляционный спектр, состоящий из 5–6 частот, с относительно простым видом поверхности Ферми, состоящей, согласно расчетам [10], из двух замкнутых участков. Данные ЦР подтверждают этот результат, поскольку в наших экспериментах наблюдалась одна линия поглощения для $m^* = 1.48m_0$, в то время как для поверхности Ферми, состоящей из многих участков, следовало бы ожидать несколько особенностей резонансного магнито-поглощения.

Рассмотрим возможность объяснения полученных в настоящей работе экспериментальных данных с помощью подхода [9], согласно которому некоторые частоты в спектрах являются кратными и комбинационными. В соответствии с [9] предположим, что основными частотами являются α и β , при этом частоте α соответствует измеренная нами эффективная масса $m_{\alpha}^{*} = 1.48m_{0}$, а эффективная масса m_{β}^{*} для частоты β слишком велика и находится за пределами измерительного диапазона магнитооптического спектрометра (для $\omega/2\pi \geq 40$ GHz и $B \leq 7$ т оценка дает $m_{\beta}^{*} > 4.9m_{0}$). Проанализируем вначале область $T > T_{c}$. Из данных рис. 5 и таблицы видно, что в пределах экспериментальной погрешности частоты x и y удовлетворяют соотношениям

$$x = 2\alpha, \tag{1}$$

$$y = \beta - \alpha, \tag{2}$$

т. е. число *х* представляет собой вторую гармонику частоты α , а частота *у* является комбинационной. При этом происхождение частоты *у* остается неясным, так как для нее нельзя подобрать хорошую комбинацию вида $m\beta \pm n\alpha$ (где *n* и *m* — целые числа).

В интервале $T < T_c$ прежде всего следует объяснить исчезновение частоты α . Одна из возможных интерпретаций состоит в том, что поверхность Ферми (Cl–Cl) претерпевает сильную перестройку в области температур ниже перехода. Однако с этой гипотезой плохо согласуется сохранение частот γ и x. Поэтому в рамках такого подхода следует предположить, что лишь некоторые участки поверхности Ферми (Cl–Cl) будут чувствительны к смене типа магнитного порядка.

Другое возможное объяснение может быть получено с помощью подхода, предложенного в [17] и с успехом примененного к описанию аномального уменьшения амплитуды осцилляций у образцов (BEDT-TTF)₂KHg(SCN)₄ при низких температурах. Суть модели [17] состоит в том, что в результате взаимодействия носителей заряда с магнитной подсистемой *g*-фактор перенормируется и в общем случае описывается функцией магнитного поля и температуры g(B, T). В результате при описании температурной зависимости амплитуды квантовых осцилляций необходимо учитывать спиновый множитель для *p*-й гармоники $\cos[(1/2)p\pi g(B, T)(m^*/m_0)]$ [11]. Видно, что если мода близка к условию спинового демпинга первой гармоники

$$g\frac{m^*}{m_0} = 2n+1, \quad n = 0, 1, 2, \dots,$$
 (3)

то небольшие изменения *g*-фактора могут привести к сильным особенностям в амплитуде осцилляций.

Именно такой случай реализуется для частоты α у образцов (Cl–Cl), поскольку $m^* \sim 1.5m_0$ и $g \approx 2$. Действительно, из измерений ЦР следует эффективная масса 1.48 m_0 (см. раздел 2), близкая к критическому значению 1.5 m_0 , и относительно небольшой перенормировки *g*-фактора достаточно для того, чтобы условие (3) было выполнено и амплитуда первой гармоники частоты α обратилась в нуль. При этом амплитуда второй гармоники остается конечной; данная особенность частоты (*x* в случае (Cl–Cl)) может наблюдаться в спектре квантовых осцилляций (рис. 4, 5). Отметим, что, поскольку при $T \sim T_c$ амплитуда всех осцилляционных особенностей сильно подавлена, для наблюдения частоты 2 α требуется понизить температуру до $T \sim 0.4$ К (рис. 4).

В рамках предложенной интерпретации постоянство частоты x означает постоянство частоты α при $T > T_c$ и $T < T_c$. Согласно данным рис. 5 и таблицы, частота β при $T < T_c$ уменьшается приблизительно на 60 Т, однако с экспериментальной точностью соотношение (2) по-прежнему выполняется, что, с одной стороны, подтверждает комбинационную природу частоты y, а с другой — согласуется с предполжением о "невидимом" присутствии частоты α в соответствии с моделью [17].

Комбинационные частоты в спектрах квантовых осцилляций могут возникнуть в результате магнитного пробоя или магнитного взаимодействия [8]. Однако для образца (Cl–Cl) оценка параметра Шенберга дает $\alpha = 4\pi (dM/dB) \sim 10^{-2}$, что практически исключает последний эффект из рассмотрения [8]. Таким образом, наиболее вероятно, что частота у и связанная с ней орбита обусловлены магнитным пробоем. Можно предположить, что частота γ также объясняется эффектом магнитного пробоя, однако для получения окончательного ответа на вопрос о природе этой особенности в спектре квантовых осцилляций требуется проведение дополнительных исследований.

Интересно, что в соответствии с предложенной интерпретацией комбинационная частота у является не суммарной, а разностной и должна возникнуть в результате "вычитания" некоторых электронных орбит. Возможно, это обстоятельство связано с тем, что фундаментальная частота β в свою очередь представляет собой комбинацию частот и возникает в результате магнитного пробоя. Однако анализ возможной структуры поверхности Ферми и проведение соответствующих теоретических расчетов выходят за рамки настоящей работы.

Совместное исследование ЦР и эффекта ГА позволило установить, что сложный спектр квантовых осцилляций и характер его перестройки в температурном интервале 0.33–1.44 К у образцов (Cl–Cl) могут быть интерпретированы в рамках модели, предполагающей наличие магнитного фазового перехода при $T_c \sim 0.9$ К и близость одной из основных гармоник к условию спинового демпинга.

Экспериментально магнитный переход проявляется в виде особенности монотонной части полевой зависи-

мости намагниченности, наблюдаемой для T < 0.9 K, и в виде подавления амплитуды осциллирующей части dM/dB в окрестности $T \sim 0.9$ K (рис. 3, 4).

Качественное объяснение сложной температурной перестройки спектров квантовых осцилляций может быть получено в рамках гипотезы о перенормировке *g*-фактора в результате взаимодействия с магнитной подсистемой, а также вследствие наличия участков поврехности Ферми и/или орбит, чувствительных к предполагаемому магнитному переходу.

Вместе с тем природа магнетизма у образцов (Cl–Cl) остается невыясненной, и сформированная в настоящей работе гипотеза требует дальнейшей экспериментальной проверки. Для этого необходимо дальнейшее изучение магнитных свойств и магнитной структуры образцов (Cl–Cl) при низких температурах.

Авторы выражают признательность Р.Б. Любовскому и Л. Броссару за полезные дискуссии.

Список литературы

- Р.Н. Любовская, Т.В. Афанасьева, О.А. Дьяченко, В.В. Гриценко, Ш.Г. Мкоян, Г.В. Шилов, Р.Б. Любовский, В.И.Лаухин, М.К. Макова, А.Г. Хоменко, А.В. Зварыкина. Изв. АН СССР. Сер. хим. 11, 2872 (1990).
- [2] R.N. Lyubovskaya, O.A. Dyachenko, V.V. Gritsenko, Sh.G. Mkoyan, L.O. Avtomyan, R.B. Lyubovskii, V.N. Laukhin, A.V. Zvarykina, A.G. Khomenko. Synth. Met. 41-43, 1907 (1991).
- [3] О.А. Дьяченко, В.В. Гриценко, Ш.Г. Мкоян, Г.В. Шилов, Л.О. Атовмян. Изв. АН СССР. Сер. хим. 9, 2062 (1991).
- [4] В.В. Гриценко, О.А. Дьяченко, Г.Б. Шилов, Ш.Г. Мкоян, Р.Н. Любовская, Т.В. Афанасьева, Р.Б. Любовский, М.К. Макова. Изв. АН СССР. Сер. хим. 4, 894 (1991).
- [5] R.N. Lyubovskaya, O.A. Dyachenko, R.B. Lyubovskii. Synth. Met. 55–57, 2899 (1993).
- [6] Р.Б. Любовский, С.И. Песоцкий, Р.Н. Любовская. Письма в ЖЭТФ 62, 35 (1995).
- [7] Р.Б. Любовский, С.И. Песоцкий, А. Гилевский, Р.Н. Любовская. ЖЭТФ 107, 1698 (1995).
- [8] R.B. Lyubovskii, R.N. Lyubovskaya, O.A. Dyachenko. J. Phys. I (Paris) 6, 1609 (1996).
- [9] R.B. Lyubovskii, S.I. Pesotskii, C. Proust, V.I. Nizhankovskii, A. Audouard, L. Brossard, R.N. Lyubovskaya. Synth. Met. 113, 227 (2000).
- [10] L.F. Verious, E. Canadell. J. Phys. I (Paris) 4, 939 (1994).
- [11] Д. Шенберг, Магнитные осцилляции в металлах. М. Мир, (1986).
- [12] M.G. Kaplunov, R.N. Lyubovskaya. J. Phys. I (Paris) 2, 1811 (1992).
- [13] F. Herlach, C.C. Agosta, R. Bogaerts, W. Boon, I. Deckers, A. De Keyser, N. Harrison, A. Lagutin, L. Li, L. Trappeniers, J. Vanacken, L. Van Bockstal, A. Van Esch. Physica B216, 161 (1996).
- [14] S.V. Demishev, A.V. Semeno, N.E. Sluchanko, N.A. Samarin, I.B. Voskoboinikov, V.V. Glushkov, J. Singleton, S.J. Blundell, S.O. Hill, W. Hayes, M.V. Kartsovnik, A.E. Kovalev, M. Kurmoo, P. Day, N.D. Kushch. Phys. Rev. B53, 12794 (1996).

- [15] С.В. Демишев, А.В. Семено, Н.Е. Случанко, Н.А. Самарин, И.Б. Воскобойников, М.В. Карцовник, А.Е. Ковалев, Н.Д. Кущ. ЖЭТФ 111, 979 (1997).
- [16] Y. Onuki, R. Settai, H. Aoki. Physica B223-224, 141 (1996).
- [17] S.V. Demishev, J. Vanacken, L. Weckhuysen, F. Herlach, Y. Brunseraede, V.V. Moshchalkov. Europhys. Lett. 42, 455 (1998).