Штарковская структура и обменные расщепления уровней иона Nd^{3+} в цепочечном никелате Nd_2BaNiO_5

© М.Н. Попова, Е.А. Романов, С.А. Климин, Е.П. Чукалина, Б.В. Милль*, G. Dhalenne**

Институт спектроскопии Российской академии наук,

- 142190 Троицк, Московская обл., Россия
- * Московский государственный университет им. М.В. Ломоносова,
- 119899 Москва, Россия
- ** Laboratoire de Physico-Chimie de l'État Solide, Université Paris-Sud,

F-91405 Orsay, France

E-mail: popova@isan.troitsk.ru

С высоким разрешением $(0.1\,\mathrm{cm}^{-1})$ измерены спектры диффузионного пропускания поликристаллических образцов цепочечного никелата $\mathrm{Nd_2BaNiO_5}$ в широких интервалах волновых чисел $(1500-20\,000\,\mathrm{cm}^{-1})$ и температур $(4.2-300\,\mathrm{K})$. Определены энергии 54 штарковских подуровней иона $\mathrm{Nd^{3+}}$ и обменные расщепления некоторых из них в магнитоупорядоченном состоянии $\mathrm{Nd_2BaNiO_5}$ $(T_N=47.5\pm1\,\mathrm{K})$. Показано, что низкотемпературные магнитные свойства $\mathrm{Nd_2BaNiO_5}$ обусловлены обменным расщеплением основного состояния $(32\,\mathrm{cm}^{-1})$.

Работа поддержана грантом Российского фонда фундаментальных исследований № 04-02-17346 и грантами по программам фундаментальных исследований РАН.

Благодаря особенностям своей структуры цепочечные никелаты R_2 BaNiO₅ (R — редкоземельный (P3) ион или Y) оказались интересными модельными объектами для изучения одномерного магнетизма в системе антиферромагнитных (АФ) цепочек атомов с целочисленным спином (S=1 для Ni^{2+}) и кроссовера к трехмерному магнитному порядку. Как известно, одномерные изотропные (гейзенберговские) магнетики не упорядочиваются даже при T=0: порядок разрушается флуктуациями. В 1983 г. Холдейн теоретически показал, что свойства гейзенберговской АФ-цепочки атомов существенно зависят от того, целочисленные или полуцелочисленные значения имеют спины атомов [1]. Для целочисленных спинов основное состояние — немагнитный синглет, и в спектре магнитных возбуждений имеется щель (холдейновская щель). Выводы Холдейна были подтверждены численным моделированием и экспериментами с соединениями $Ni(C_2H_8N_2)_2NO_2ClO_4$ (NENP) и CsNiCl₂ (см., например, [2,3]). В никелатах семейства R_2 BaNiO₅ можно плавно изменять межцепочечное взаимодействие, меняя РЗ-ион R³⁺ или частично замещая его немагнитным ионом Y^{3+} , что открывает новые возможности для исследования квазиодномерных холдейновских магнетиков.

Никелаты R_2 BaNiO $_5$ (R=Pr-Tm, Y) принадлежат к ромбической сингонии и имеют пространственную группу Immm (D_{2h}^{25}) [4,5]. Наиболее характерной особенностью структуры является наличие параллельных друг другу и оси a изолированных цепочек сжатых октаэдров NiO $_6$, соединенных вершинами (рис. 1). Цепочки связаны между собой через ионы Ba^{2+} и R^{3+} . Ионы R^{3+} занимают одну позицию с локальной симметрией C_{2v} (рис. 1, b). Соединение с R=Y (Y_2 BaNiO $_5$) не упорядочивается по крайней мере до $100\,\mathrm{mK}$ [6]; его магнитная восприимчивость имеет вид кривой с широким макси-

мумом, характерной для одномерного антиферромагнетика (отсюда была получена оценка внутрицепочечного взаимодействия $J \approx 25 \,\mathrm{meV}$ [7]), а в спектре неупругого рассеяния нейтронов наблюдается возбуждение с энергией $\Delta \approx 10\,\mathrm{meV}$, которое приписывается холдейновской щели [7]. Была получена следующая оценка верхней границы для межцепочечного взаимодействия $J': J'/J \le 5 \cdot 10^{-4}$ [8]. Таким образом, Y₂BaNiO₅ почти идеальная модель А Φ -цепочки спинов S=1. Замена немагнитного иттрия на РЗ-элемент приводит к росту межцепочечного взаимодействия и установлению магнитного порядка. Магнитная структура как никелевой, так и Р3-подсистемы характеризуется вектором распространения $\mathbf{k} = (1/2, 0, 1/2)$ для всех соединений с $R \neq Y$ [9]. Однако направления магнитных моментов различны в соединениях с разными РЗ-элементами. Для R = Nd, Tb, Dy, Но магнитные моменты параллельны кристаллической оси с [9], а для соединения Er₂BaNiO₅ они параллельны оси **a** [9,10]. Температуры Нееля T_N варьируются от $12.5\,\mathrm{K}$ для $\mathrm{Tm_2BaNiO_5}$ до $65\,\mathrm{K}$ для ${
m Tb}_2{
m BaNiO}_5$. Для ${
m Nd}_2{
m BaNiO}_5$ $T_N=48\,{
m K}$ [9,11,12]. Для систем $(R_x Y_{1-x})_2$ BaNiO₅ $(0 \le x \le 1)$ $T_N(x)$ плавно меняется, что позволяет детально изучать кроссовер от одномерного (1D) квантового к трехмерному (3D) классическому антиферромагнетику и поведение холдейновских возбуждений при 1D-3D-кроссовере.

Такое исследование было выполнено для семейства $(Nd_xY_{1-x})_2BaNiO_5$ в серии работ по неупругому рассеянию нейтронов [13,14]. Другой нейтронный эксперимент (для Nd_2BaNiO_5) был предпринят с целью исследования взаимодействия одномерных магнитных возбуждений Ni-цепочек с электронными возбуждениями РЗ-подсистемы [15]. Была обнаружена и качественно объяснена интерференция этих двух типов возбуждений. Построению более полной теории явления препятство-

Рис. 1. Структура Nd_2BaTiO_5 (*a*) и ближайшее окружение иона Nd^{3+} в Nd_2BaNiO_5 (*b*). Октаэдры NdO_7 соединены в цепочки вдоль оси **a** через кислород в вершине. Чтобы показать связь Ni-O-Ni в цепочках, удалены два октаэдра.

вало, как указали авторы [15], отсутствие информации об электронных состояниях $\mathrm{Nd^{3+}}$ в $\mathrm{Nd_2BaNiO_5}$.

Такая информация необходима также для объяснения магнитных свойств $\mathrm{Nd_2BaNiO_5}$. На зависимости магнитной восприимчивости от температуры $\chi(T)$ имеется лишь очень слабая особенность при температуре магнитного упорядочения $T_N=48~\mathrm{K}~[11,16,17]$, а также ярко выраженный максимум при существенно более низкой температуре $T_{\mathrm{max}}=26~\mathrm{K}~[11,17]$, когда, согласно нейтронным данным, никаких изменений магнитной структуры не происходит. Возможно, максимум на зависимости $\chi(T)$ соответствует опустошению верхней компоненты крамерсова дублета иона $\mathrm{Nd^{3+}}$, расщепленного обменными взаимодействиями в магнитоупорядоченном состоянии, аналогично случаю $\mathrm{Er_2BaNiO_5}~[11,18]$. Чтобы проверить эту гипотезу, необходимы спектроскопические исследования.

Насколько нам известно, спектроскопическая информация о соединении Nd_2BaNiO_5 ограничивается сообщением о положении трех нижайших штарковских подуровней основного состояния (144, 192 и 304 cm $^{-1}$), найденных по спектрам неупругого рассеяния нейтронов, зарегистрированным с разрешением $\approx 2.5 \, \mathrm{cm}^{-1}$ [15]. Настоящая работа посвящена оптической спектроскопии высокого разрешения (0.1 cm $^{-1}$) соединения Nd_2BaNiO_5 и для сравнения $Nd_{0.1}Y_{1.9}BaNiO_5$.

1. Эксперимент

Nd₂BaNiO₅ Поликристаллические образцы Nd_{0.1}Y_{1.9}BaNiO₅ были приготовлены методом твердофазного синтеза из порошков Y_2O_3 (99.99%) и/или Nd₂O₃ (99.99%), NiO (99.99%) и ВаCO₃ (99.99%), которые смешивались и прокаливались при температуре 900°C на воздухе в течение 24 h, а затем прессовались в таблетки под давлением 2500 bar. Особое внимание уделялось содержанию летучих веществ в Nd₂O₃ $(\sim 15\%)$. Таблетки спекались при температурах от 1000 до 1450°C на воздухе в течение 24-50 h с промежуточным измельчением. После каждой обработки образцы исследовались на рентгеновском дифрактометре. После спекания при температуре 1450°C в образце $Nd_{0.1}Y_{1.9}BaNiO_5$ не было выявлено примесных фаз, дифракционная картина соответствовала пространственной группе Іттт. Дифракционная картина для Nd₂BaNiO₅ после обработки при температуре 1350°C также указывала на группу Іттт, однако имелись следы других фаз.

Спектры диффузионного пропускания образцов Nd_2BaNiO_5 с высоким разрешением (до $0.1 \,\mathrm{cm}^{-1}$) в широких спектральном $(1600-20000\,\mathrm{cm}^{-1})$ и температурном (4.2–300 К) интервалах регистрировались Фурье-спектрометре высокого разрешения ВОМЕМ DA3.002. Порошковые образцы смешивались со спиртом и наносились на подложку из Ва F₂. Образец помещался в криостат с парами гелия. Для спектрального диапазона $9000-20\,000\,\mathrm{cm}^{-1}$ использовался кремниевый приемник. Для диапазона $5000-10\,000\,\mathrm{cm^{-1}}$ применялись два приемника InSb. Один из них стандартный; другой, специальный, устанавливался в криостате непосредственно за образцом. Диапазон $1600-5000\,\mathrm{cm}^{-1}$ регистрировался с помощью ртуть-кадмий-теллурового приемника.

2. Оптические спектры $Nd_{0.1}Y_{1.9}BaNiO_5$ и Nd_2BaNiO_5 в парамагнитном состоянии и штарковская структура уровней иона Nd^{3+}

На рис. 2 показан обзорный спектр пропускания поликристаллических образцов $\mathrm{Nd_2BaNiO_5}$ в парамагнитном состоянии. Узкие линии соответствуют f-f-переходам в ионе $\mathrm{Nd^{3+}}$ с основного $^4I_{9/2}$ на ряд возбужденных

Энергии штарковских уровней иона Nd^{3+} в цепочечных никелатах $(Nd_xY_{1-x})_2$ BaNiO₅, определенные по спектрам при $T=90\,\mathrm{K}$ (в скобках указаны обменные расщепления в cm $^{-1}$ для Nd_2 BaNiO₅ при $T=5\,\mathrm{K}$)

Мультиплет	E, cm ⁻¹		Мультиплет	E, cm^{-1}	
	x = 1	x = 0.05	TVI YSIBI MILLIET	x = 1	x = 0.05
$^{4}I_{9/2}$	0 (32)	0	$^{4}F_{5/2}$	12 241 (<2)	12 222
-,	140	130		12 251 (< 2)	12 231
	190	180		12 330 (3.7)	12 306
	302	290	$^{2}H2_{9/2}$	12 390	12 377
	~ 440	440	·	12 438	12 410
$^{4}I_{11/2}$	1901	1909		12 490	12 470
	2029	2018		12 552	12 521
	2046	2040		12 580	12 551
	2104	2100	$^{4}F_{7/2}$	13 190 (5.3)	13 183
	2183	2178	·	13 200 (5.3)	13 187
	2224	2222		13 258 (4)	13 229
$^{4}I_{13/2}$	3807		$^{4}S_{3/2}$	13 340 (14.5)	13 318
	3970	3956		13 352 (22)	13 327
	3992 (11)	3978	$^{4}F_{9/2}$	14 390 (2)	14 379
	4029	4022	·	14468 (7)	14 447
	4119	4117		14631 (14)	14 603
	4169	4160	$^{4}G_{5/2}$	16 640 (6)	16 608
	4217	4212	·	16 743 (10)	16 699
$^{4}I_{15/2}$	5772			16779 (7)	16 738
	5912 (16)		$^{2}G_{7/2}$	16 996	16 992
	5956 (< 4)		,	17 015	17 026
	6163			17 057	
	6220			17 168	17 132
	6248		$^4G_{7/2}$	18 585	18 600
	6353		,	18 625	18 704
$^{4}F_{3/2}$	11 188 (11.4)	11 182		18 748	
	11 323	11 290	$^{2}G_{9/2}$	19 114	

Рис. 2. Спектр пропускания ${
m Nd_2BaNiO_5}$ при температуре $\sim 100\,{
m K}$. Внизу указаны области применяемых приемников излучения (МСТ — ртуть-кадмий-теллур). Сверху представлены положения мультиплетов иона ${
m Nd^{3+}}$ в соединении ${
m LaCl_3:Nd^{3+}}$ [19].

Рис. 3. Схема расщепления уровней Nd³⁺ в кристаллическом поле и расщепление крамерсовых дублетов в магнитоупорядоченном состоянии. Оптические переходы, которые "вымерзают" при низких температурах, указаны пунктирными линиями.

Рис. 4. Спектры пропускания $(Nd_xY_{1-x})_2BaNiO_5$ при температуре $100\,\mathrm{K}$ в области переходов с основного состояния $^4I_{9/2}$ иона Nd^{3+} на возбужденные (указаны в правом нижнем углу каждого фрагмента). Спектральные линии обозначены в соответствии со схемой на рис. 3.

Рис. 5. Спектр пропускания ${\rm Nd_2BaNiO_5}$ при различных температурах. Линии, соответствующие переходам с возбужденных подуровней мультиплета $^4I_{9/2}$, исчезают при уменьшении температуры. При 40 K видны обменные расщепления линий IA и IB.

Рис. 6. Заселенности возбужденных уровней с энергией E_i , вычисленные по формуле $n_i/N = \exp(-E_i/kT)/\sum_{j=1}^5 \exp(-E_j/kT)$ (сплошные линии), и экспериментально измеренные интенсивности спектральных линий (точки).

уровней. Для сравнения приведены положения уровней Nd^{3+} в LaCl_3 [19]. Положения нижних уровней $^4I_{11/2},\,^4I_{13/2}$ и $^4I_{15/2}$ одинаковы для $\mathrm{Nd}_2\mathrm{BaNiO}_5$ и $\mathrm{LaCl}_3,\,^8$ в то время как вышележащие уровни в $\mathrm{Nd}_2\mathrm{BaNiO}_5$ смещены в сторону меньших энергий по отношению к $\mathrm{LaCl}_3.$ Такой нефелоксетический сдвиг [20,21] обусловлен большим перекрытием волновых функций возбужденных состояний Nd^{3+} с волновыми функциями лигандов в $\mathrm{Nd}_2\mathrm{BaNiO}_5.$

В кристаллическом поле с локальной симметрией C_{2v} каждый уровень свободного иона Nd^{3+} , характеризуемый значением J полного момента, расщепляется на J+1/2 крамерсовых дублета (см. схему на рис. 3).

Все спектры могут быть проанализированы в рамках единственного неодимового центра. Чтобы облегчить анализ штарковских расщеплений, мы использовали разбавленное соединение Nd_{0.1}Y_{1.9}BaNiO₅, которое не упорядочивается по крайней мере до 10 К и спектр которого не усложнен обменными расщеплениями. Спектры пропускания обоих соединений сравниваются на рис. 4. Энергии штарковских подуровней мультиплетов иона Nd³⁺, найденные по спектрам, представлены в таблице. Штарковские подуровни основного состояния ${}^4I_{9/2}$ были определены по спектрам при повышенных температурах (рис. 5). Интенсивности линий, разгорающихся при повышении температуры, коррелируют с заселенностью возбужденных штарковских подуровней основного состояния (рис. 6). Полученные значения энергий нижайших уровней (140, 190, $302\,\mathrm{cm}^{-1}$) находятся в хорошем согласии с нейтронными данными (144, 192, $304 \,\mathrm{cm}^{-1}$) [15].

Экспериментально определенные положения 54 штар-ковских уровней иона $\mathrm{Nd^{3+}}$ в $\mathrm{Nd_2BaNiO_5}$ могут быть использованы для анализа в рамках теории кристаллического поля.

3. Обменные расщепления в спектрах Nd₂BaNiO₅. Модель молекулярного поля

В магнитоупорядоченном состоянии магнитные взаимодействия снимают крамерсово вырождение ионов Nd^{3+} , что приводит к расщеплению спектральных линий (см. схему на рис. 3). На рис. 7 показано изменение одной из линий при понижении температуры. Появляющееся при $\sim 50 \, \mathrm{K}$ расщепление увеличивается, линии сужаются, так что при $T \leq 35 \, \mathrm{K}$ отчетливо видны все четыре компоненты расщепленной линии, при

Рис. 7. Линия IA (рис. 4, d) при различных температурах. Обозначения соответствуют схеме на рис. 3.

Рис. 8. Температурные зависимости расщепления Δ основного состояния иона Nd^{3+} (I), энергии E моды 4 meV, наблюдавшейся в спектре нейтронного рассеяния (2) и магнитного момента m_{Ni} (3). Зависимость $\Delta(T)$ получена из спектроскопических измерений данной работы, E(T) и $m_{\mathrm{Ni}}(T)$ — из экспериментов по рассеянию нейтронов [14].

этом низкочастотные компоненты "вымораживаются". Анализируя спектры, можно определить возникающие при магнитном упорядочении в кристалле обменные расщепления крамерсовых дублетов, соответствующих начальному и конечному уровням оптического перехода. Найденные по спектрам расщепления при $T=5\,\mathrm{K}$ приведены в таблице.

На рис. 8 показана температурная зависимость расщепления основного состояния $\Delta(T)$, а также температурные зависимости энергии моды 4 meV, зарегистрированной в спектре нейтронного рассеяния [14], и магнитного момента никелевой подсистемы $m_{\rm Ni}(T)$, определенного из нейтронных данных [14]. Из рис. 8 однозначно следует, что мода 4 meV, наблюдавшаяся в экспериментах по рассеянию нейтронов в ${\rm Nd_2BaNiO_5}$ и первоначально сопоставленная со штарковским уровнем иона ${\rm Nd^{3+}}$ [22], в действительности отвечает переходу между компонентами основного крамерсова дублета ${\rm Nd^{3+}}$, расщепленного магнитным взаимодействием в магнитоупорядоченном состоянии, т.е. соответствует перевороту неодимового магнитного момента, как и предполагалось в работе [12].

Для $T<0.9T_N$ величина расщепления основного состояния P3-иона в ${\rm Nd_2BaNiO_5}$ пропорциональна магнитному моменту никелевой подсистемы (рис. 8), так же как и в случае ${\rm Er_2BaNiO_5}$ [11,18]. Это означает, что к данной системе применима модель молекулярного поля. P3-ионы ведут себя так, как если бы они находились в некотором эффективном магнитном поле $B_{\rm eff}$, созданном упорядоченной никелевой подсистемой [11,17,18]. В рамках этого приближения можно записать

$$\Delta(T) = 2m_{\rm Nd}^{(0)} B_{\rm eff}(T), \tag{1}$$

$$B_{\text{eff}}(T) = \lambda m_{\text{Ni}}(T). \tag{2}$$

Здесь $m_{\mathrm{Nd}}^{(0)}$ — магнитный момент одного иона Nd^{3+} в основном состоянии, λ — константа молекулярного

поля. Взяв экспериментальные величины $m_{\mathrm{Nd}}^{(0)}=2.65\mu_{\mathrm{B}}$ и $m_{\mathrm{Ni}}^{(0)}=1.6\mu_{\mathrm{B}}$ из работы по рассеянию нейтронов [9], при аппроксимации нашей экспериментальной зависимости $\Delta(T)$ с помощью уравнений (1) и (2) мы получили $\lambda=7.61\mu_{\mathrm{B}}$. Это значение достаточно хорошо согласуется с величиной, полученной в работе [17] ($\lambda=7.51\mu_{\mathrm{B}}$) из анализа магнитной восприимчивости $\mathrm{Nd_2BaNiO_5}$.

При $T>T_N$ расщепление спектральных линий не исчезает полностью. Оставшееся расщепление связано с ближним порядком. Ранее мы предположили, что температура магнитного упорядочения может быть найдена по точке перегиба на зависимости $\Delta(T)$ [23,24]. Сравнение оптических и нейтронных данных для $\mathrm{Nd_2BaNiO_5}$ (рис. 8) подтверждает это предположение. На основании спектроскопических данных мы получили $T_N=47.5\pm1\,\mathrm{K}$, что согласуется со значением $T_N=48\,\mathrm{K}$, определенным в работах по дифракции нейтронов [9,16].

Магнитный момент неодимовой подсистемы в магнитоупорядоченном состоянии Nd₂BaNiO₅

Возбужденные штарковские подуровни основного мультиплета (140, 190 cm $^{-1}$ и т.д.; см. таблицу) практически не заселены при $T < T_N$. Поэтому только основной крамерсов дублет вносит вклад в магнитный момент $m_{\rm Nd}$ неодимовой подсистемы, и можно записать

$$m_{\rm Nd}(T) = m_{\rm Nd}^{(0)} \frac{n_1 - n_2}{n_1 + n_2} = m_{\rm Nd}^{(0)} \, \text{th} \, \frac{\Delta(T)}{2kT}.$$
 (3)

Здесь $m_{\rm Nd}(T)$ — магнитный момент на один ион ${\rm Nd}^{3+}$, n_1 и $n_2=n_1\exp(\Delta/kT)$ — соответственно заселенности нижнего и верхнего подуровней основного крамерсова дублета.

Рис. 9. Температурные зависимости магнитного момента Nd^{3+} в магнитоупорядоченном состоянии $\mathrm{Nd}_2\mathrm{BaNiO}_5$, полученные из спектроскопических данных по формуле (3) (1) и из данных по нейтронному рассеянию (2).

На рис. 9 показана зависимость $m_{\rm Nd}(T)$, вычисленная по формуле (3) с использованием спектроскопических данных по расщеплению основного состояния $\Delta(T)$ и измеренная в нейтронном эксперименте [14]. Хорошее согласие подтверждает применимость спектроскопической методики для исследования магнитных свойств цепочечных никелатов.

Наши данные дают также прямое обоснование подхода (впервые предложенного в нашей работе [11]), примененного в [17] для вычисления магнитной восприимчивости $\chi(T)$ Nd₂BaNiO₅, и показывают, что максимум на зависимости $\chi(T)$ при температуре $T_{\rm max}\sim 26\,{\rm K}$ (согласно [11], 30 К), существенно меньшей, чем температура магнитного упорядочения $T_N = 47.5 \,\mathrm{K}$, связан с опустошением верхней компоненты основного крамерсова дублета иона Nd³⁺, расщепленного Nd-Ni-взаимодействиями в магнитоупорядоченном состоянии Nd₂BaNiO₅. С помощью этого подхода можно оценить температуру такого максимума по формуле $kT_{
m max}=0.65\Delta(0)$, не проводя вычислений всей зависимости $\chi(T)$ [23]. Подставляя найденные по спектрам значения $\Delta(0) = 32 \, \mathrm{cm}^{-1}$, получаем оценку $T_{\mathrm{max}} = 30 \, \mathrm{K}$, что близко к наблюдаемому значению.

Список литературы

- [1] F.D.M. Haldane. Phys. Rev. Lett. **50**, *15*, 1153 (1983).
- [2] W.J.L. Buyers, R.M. Morra, R.L. Armstrong, M.J. Hogan, P. Gerlach, K. Hirakawa. Phys. Rev. Lett. 56, 4, 371 (1986).
- [3] Z. Tun, W.J.L. Buyers, A. Harrison, J.A. Rayne. Phys. Rev. B 43, 16, 13 331 (1991).
- [4] S. Schiffler, H. Müller-Buschbaum. Z. Anorg. Allg. Chem. 532, 10 (1986).
- [5] E. García-Matres, J.L. Martínez, J. Rodríguez-Carvajal. J. Solid State Chem. 103, 322 (1993).
- [6] K. Kojima, A. Keren, L.P. Le, G.M. Luke, B. Nachumi, W.D. Wu, Y.J. Uemura, K. Kiyono, S. Miyasaka, H.Takagi, S. Uchida. Phys. Rev. Lett. 74, 17, 3471 (1995).
- [7] J. Darriet, L.P. Regnault. Solid State Commun. **86**, *7*, 409 (1993).
- [8] Guangyong Xu, J.F. Ditusa, T. Ito, K. Oka, H. Takagi,C. Broholm, G. Aeppli. Phys. Rev. B 54, 10, 6827 (1996).
- [9] E. García-Matres, J.L. Martínez, J. Rodríguez-Carvajal. Eur. Phys. J. B 24, 59 (2001).
- [10] K.A. Alonso, J. Amador, J.L. Martinez, I. Rasines, J. Rodríguez-Carvajal, R. Saez-Puche. Solid State Commun. 76, 4, 467 (1990).
- [11] G.G. Chepurko, Z.A. Kazei, D.A. Kudrjavtsev, R.Z. Levitin, B.V. Mill, M.N. Popova, V.V. Snegirev. Phys. Lett. A 157, 1, 81 (1991).
- [12] A. Zheludev, J.M. Tranquada, T. Vogt, D.J. Buttrey. Phys. Rev. B 54, 9, 6437 (1996).
- [13] T. Yokoo, A. Zheludev, M. Nakamura, J. Akimitsu. Phys. Rev. B 55, 17, 11516 (1997).
- [14] T. Yokoo, S.A. Raymond, A. Zheludev, S. Maslov, E. Ressouche, I. Zaliznyak, R. Erwin, M. Nakamura, J. Akimitsu. Phys. Rev. B 58, 21, 14424 (1998).
- [15] A. Zheludev, S. Maslov, T. Yokoo, J. Akimitsu, S. Raymond, S.E. Nagler, K. Hirota. Phys. Rev. B 61, 17, 11601 (2000).

- [16] A. Zheludev, J.P. Hill, D.J. Buttrey. Phys. Rev. B 54, 10, 7216 (1996).
- [17] E. García-Matres, J.L. García-Munos, J.L. Martínez, J. Rodríguez-Carvajal. J. Magn. Magn. Mater. 149, 363 (1995).
- [18] M.N. Popova, S.A. Klimin, E.P. Chukalina, B.Z. Malkin, R.Z. Levitin, B.V. Mill, E. Antic-Fedancev. Phys. Rev. B 68, 15, 155 103 (2003).
- [19] G.H. Dieke. Spectra and Energy Levels of Rare Earth Ions in Crystals. Interscience, N. Y. (1968). P. 142.
- [20] P. Caro, O. Beaury, E. Antic. J. de Phys. 37, 671 (1976).
- [21] E. Antic-Fidancev, M. Lemaitre-Blaise, P. Caro. New J. Chem. 11, 6, 467 (1987).
- [22] A. Zheludev, J.M. Tranquada, T. Vogt, D.J. Buttrey. Phys. Rev. B 54, 10, 7210 (1996).
- [23] M.N. Popova. Proc. SPIE **2706**, 182 (1996).
- [24] M.N. Popova. J. Alloys Comp. 275–277, 142 (1998).