Штарковская структура и обменные расщепления уровней иона Nd³⁺ в цепочечном никелате Nd₂BaNiO₅

© М.Н. Попова, Е.А. Романов, С.А. Климин, Е.П. Чукалина, Б.В. Милль*, G. Dhalenne**

Институт спектроскопии Российской академии наук,

142190 Троицк, Московская обл., Россия

* Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

** Laboratoire de Physico-Chimie de l'État Solide, Université Paris-Sud,

F-91405 Orsay, France

E-mail: popova@isan.troitsk.ru

С высоким разрешением (0.1 сm⁻¹) измерены спектры диффузионного пропускания поликристаллических образцов цепочечного никелата Nd₂BaNiO₅ в широких интервалах волновых чисел (1500–20000 сm⁻¹) и температур (4.2–300 K). Определены энергии 54 штарковских подуровней иона Nd³⁺ и обменные расщепления некоторых из них в магнитоупорядоченном состоянии Nd₂BaNiO₅ ($T_N = 47.5 \pm 1$ K). Показано, что низкотемпературные магнитные свойства Nd₂BaNiO₅ обусловлены обменным расщеплением основного состояния (32 cm⁻¹).

Работа поддержана грантом Российского фонда фундаментальных исследований № 04-02-17346 и грантами по программам фундаментальных исследований РАН.

Благодаря особенностям своей структуры цепочечные никелаты R₂BaNiO₅ (R — редкоземельный (P3) ион или Ү) оказались интересными модельными объектами для изучения одномерного магнетизма в системе антиферромагнитных (АФ) цепочек атомов с целочисленным спином (S = 1 для Ni²⁺) и кроссовера к трехмерному магнитному порядку. Как известно, одномерные изотропные (гейзенберговские) магнетики не упорядочиваются даже при T = 0: порядок разрушается флуктуациями. В 1983 г. Холдейн теоретически показал, что свойства гейзенберговской АФ-цепочки атомов существенно зависят от того, целочисленные или полуцелочисленные значения имеют спины атомов [1]. Для целочисленных спинов основное состояние — немагнитный синглет, и в спектре магнитных возбуждений имеется щель (холдейновская щель). Выводы Холдейна были подтверждены численным моделированием и экспериментами с соединениями Ni(C2H8N2)2NO2ClO4 (NENP) и CsNiCl₂ (см., например, [2,3]). В никелатах семейства R₂BaNiO₅ можно плавно изменять межцепочечное взаимодействие, меняя РЗ-ион R³⁺ или частично замещая его немагнитным ионом Y³⁺, что открывает новые возможности для исследования квазиодномерных холдейновских магнетиков.

Никелаты R₂BaNiO₅ (R = Pr-Tm, Y) принадлежат к ромбической сингонии и имеют пространственную группу *Immm* (D_{2h}^{25}) [4,5]. Наиболее характерной особенностью структуры является наличие параллельных друг другу и оси а изолированных цепочек сжатых октаздров NiO₆, соединенных вершинами (рис. 1). Цепочки связаны между собой через ионы Ba²⁺ и R³⁺. Ионы R³⁺ занимают одну позицию с локальной симметрией C_{2v} (рис. 1, *b*). Соединение с R = Y (Y₂BaNiO₅) не упорядочивается по крайней мере до 100 mK [6]; его магнитная восприимчивость имеет вид кривой с широким макси-

мумом, характерной для одномерного антиферромагнетика (отсюда была получена оценка внутрицепочечного взаимодействия $J \approx 25 \text{ meV}$ [7]), а в спектре неупругого рассеяния нейтронов наблюдается возбуждение с энергией $\Delta \approx 10 \,\mathrm{meV}$, которое приписывается холдейновской щели [7]. Была получена следующая оценка верхней границы для межцепочечного взаимодействия $J': J'/J \le 5 \cdot 10^{-4}$ [8]. Таким образом, Y₂BaNiO₅ почти идеальная модель АФ-цепочки спинов S = 1. Замена немагнитного иттрия на РЗ-элемент приводит к росту межцепочечного взаимодействия и установлению магнитного порядка. Магнитная структура как никелевой, так и РЗ-подсистемы характеризуется вектором распространения $\mathbf{k} = (1/2, 0, 1/2)$ для всех соединений с $R \neq Y$ [9]. Однако направления магнитных моментов различны в соединениях с разными РЗ-элементами. Для R = Nd, Tb, Dy, Ho магнитные моменты параллельны кристаллической оси с [9], а для соединения Er₂BaNiO₅ они параллельны оси а [9,10]. Температуры Нееля T_N варьируются от 12.5 К для Tm2BaNiO5 до 65 К для Tb_2BaNiO_5 . Для Nd_2BaNiO_5 $T_N = 48 K$ [9,11,12]. Для систем $(\mathbf{R}_{x}\mathbf{Y}_{1-x})_{2}$ BaNiO₅ $(0 \le x \le 1)$ $T_{N}(x)$ плавно меняется, что позволяет детально изучать кроссовер от одномерного (1D) квантового к трехмерному (3D) классическому антиферромагнетику и поведение холдейновских возбуждений при 1D-3D-кроссовере.

Такое исследование было выполнено для семейства $(Nd_xY_{1-x})_2BaNiO_5$ в серии работ по неупругому рассеянию нейтронов [13,14]. Другой нейтронный эксперимент (для Nd_2BaNiO_5) был предпринят с целью исследования взаимодействия одномерных магнитных возбуждений Ni-цепочек с электронными возбуждениями P3-подсистемы [15]. Была обнаружена и качественно объяснена интерференция этих двух типов возбуждений. Построению более полной теории явления препятство-

Рис. 1. Структура $Nd_2BaTiO_5(a)$ и ближайшее окружение иона Nd^{3+} в $Nd_2BaNiO_5(b)$. Октаэдры NdO_7 соединены в цепочки вдоль оси **а** через кислород в вершине. Чтобы показать связь Ni-O-Ni в цепочках, удалены два октаэдра.

вало, как указали авторы [15], отсутствие информации об электронных состояниях Nd^{3+} в Nd_2BaNiO_5 .

Такая информация необходима также для объяснения магнитных свойств Nd₂BaNiO₅. На зависимости магнитной восприимчивости от температуры $\chi(T)$ имеется лишь очень слабая особенность при температуре магнитного упорядочения $T_N = 48$ K [11,16,17], а также ярко выраженный максимум при существенно более низкой температуре $T_{\text{max}} = 26$ K [11,17], когда, согласно нейтронным данным, никаких изменений магнитной структуры не происходит. Возможно, максимум на зависимости $\chi(T)$ соответствует опустошению верхней компоненты крамерсова дублета иона Nd³⁺, расщепленного обменными взаимодействиями в магнитоупорядоченном состоянии, аналогично случаю Er₂BaNiO₅ [11,18]. Чтобы проверить эту гипотезу, необходимы спектроскопические исследования.

Насколько нам известно, спектроскопическая информация о соединении Nd_2BaNiO_5 ограничивается сообщением о положении трех нижайших штарковских подуровней основного состояния (144, 192 и 304 сm⁻¹), найденных по спектрам неупругого рассеяния нейтронов, зарегистрированным с разрешением ≈ 2.5 сm⁻¹ [15]. Настоящая работа посвящена оптической спектроскопии высокого разрешения (0.1 сm⁻¹) соединения Nd_2BaNiO_5 и для сравнения $Nd_{0.1}Y_{1.9}BaNiO_5$.

1. Эксперимент

Поликристаллические Nd₂BaNiO₅ образцы Nd01Y19BaNiO5 были приготовлены методом твердофазного синтеза из порошков У2О3 (99.99%) и/или Nd₂O₃ (99.99%), NiO (99.99%) и ВаСО₃ (99.99%), которые смешивались и прокаливались при температуре 900°С на воздухе в течение 24 h, а затем прессовались в таблетки под давлением 2500 bar. Особое внимание уделялось содержанию летучих веществ в Nd₂O₃ $(\sim 15\%)$. Таблетки спекались при температурах от 1000 до 1450°C на воздухе в течение 24-50 h с промежуточным измельчением. После каждой обработки образцы исследовались на рентгеновском дифрактометре. После спекания при температуре 1450°С в образце Nd_{0.1}Y_{1.9}BaNiO₅ не было выявлено примесных фаз, дифракционная картина соответствовала пространственной группе Іттт. Дифракционная картина для Nd₂BaNiO₅ после обработки при температуре 1350°C также указывала на группу Іттт, однако имелись следы других фаз.

Спектры диффузионного пропускания образцов Nd_2BaNiO_5 с высоким разрешением (до $0.1 \, \text{cm}^{-1}$) в широких спектральном $(1600-20\,000\,\mathrm{cm}^{-1})$ и температурном (4.2–300 К) интервалах регистрировались на Фурье-спектрометре высокого разрешения ВОМЕМ DA3.002. Порошковые образцы смешивались со спиртом и наносились на подложку из BaF₂. Образец помещался в криостат с парами гелия. Для спектрального диапазона $9000-20000 \,\mathrm{cm}^{-1}$ использовался кремниевый приемник. Для диапазона $5000-10\,000\,{\rm cm^{-1}}$ применялись два приемника InSb. Один из них стандартный; другой, специальный, устанавливался в криостате непосредственно за образцом. Диапазон 1600 $-5000 \,\mathrm{cm}^{-1}$ регистрировался с помощью ртуть-кадмий-теллурового приемника.

2. Оптические спектры Nd_{0.1}Y_{1.9}BaNiO₅ и Nd₂BaNiO₅ в парамагнитном состоянии и штарковская структура уровней иона Nd³⁺

На рис. 2 показан обзорный спектр пропускания поликристаллических образцов Nd_2BaNiO_5 в парамагнитном состоянии. Узкие линии соответствуют f-f-переходам в ионе Nd^{3+} с основного ${}^4I_{9/2}$ на ряд возбужденных

Мультиплет	E, cm^{-1}		Мультиплет	E, cm^{-1}	
	x = 1	<i>x</i> = 0.05	WIJJIDIMIJICI	x = 1	<i>x</i> = 0.05
⁴ <i>I</i> _{9/2}	0 (32)	0	${}^{4}F_{5/2}$	12 241 (< 2)	12 222
,	140	130		12251 (<2)	12 231
	190	180		12330 (3.7)	12 306
	302	290	$^{2}H2_{9/2}$	12 390	12 377
	~ 440	440		12438	12410
${}^{4}I_{11/2}$	1901	1909		12 490	12 470
	2029	2018		12 552	12 521
	2046	2040		12 580	12 551
	2104	2100	${}^{4}F_{7/2}$	13 190 (5.3)	13 183
	2183	2178		13 200 (5.3)	13 187
	2224	2222		13 258 (4)	13 229
${}^{4}I_{13/2}$	3807		${}^{4}S_{3/2}$	13 340 (14.5)	13 318
	3970	3956		13 352 (22)	13 327
	3992 (11)	3978	${}^{4}F_{9/2}$	14390 (2)	14 379
	4029	4022		14 468 (7)	14 447
	4119	4117		14631 (14)	14 603
	4169	4160	${}^{4}G_{5/2}$	16640 (6)	16 608
	4217	4212		16743 (10)	16 699
$4I_{15/2}$	5772			16779 (7)	16738
	5912 (16)		${}^{2}G_{7/2}$	16996	16 992
	5956 (<4)		,	17015	17 026
	6163			17057	
	6220			17 168	17 132
	6248		${}^{4}G_{7/2}$	18 585	18 600
	6353		,	18625	18 704
${}^{4}F_{3/2}$	11 188 (11.4)	11 182		18 748	
	11 323	11 290	${}^{2}G_{9/2}$	19114	

Энергии штарковских уровней иона Nd^{3+} в цепочечных никелатах $(Nd_xY_{1-x})_2$ BaNiO₅, определенные по спектрам при T = 90 K (в скобках указаны обменные расщепления в ст⁻¹ для Nd_2 BaNiO₅ при T = 5 K)

Рис. 2. Спектр пропускания Nd_2BaNiO_5 при температуре ~ 100 К. Внизу указаны области применяемых приемников излучения (МСТ — ртуть-кадмий-теллур). Сверху представлены положения мультиплетов иона Nd^{3+} в соединении $LaCl_3:Nd^{3+}$ [19].

Рис. 3. Схема расщепления уровней Nd³⁺ в кристаллическом поле и расщепление крамерсовых дублетов в магнитоупорядоченном состоянии. Оптические переходы, которые "вымерзают" при низких температурах, указаны пунктирными линиями.

Wavenumber, cm⁻¹

Рис. 4. Спектры пропускания $(Nd_x Y_{1-x})_2 BaNiO_5$ при температуре 100 К в области переходов с основного состояния ${}^4I_{9/2}$ иона Nd^{3+} на возбужденные (указаны в правом нижнем углу каждого фрагмента). Спектральные линии обозначены в соответствии со схемой на рис. 3.

Рис. 5. Спектр пропускания Nd_2BaNiO_5 при различных температурах. Линии, соответствующие переходам с возбужденных подуровней мультиплета ⁴ $I_{9/2}$, исчезают при уменьшении температуры. При 40 К видны обменные расщепления линий IA и IB.

Рис. 6. Заселенности возбужденных уровней с энергией E_i , вычисленные по формуле $n_i/N = \exp(-E_i/kT)/\sum_{j=1}^{5} \exp(-E_j/kT)$ (сплошные линии), и экспериментально измеренные интенсивности спектральных линий (точки).

уровней. Для сравнения приведены положения уровней Md^{3+} в LaCl₃ [19]. Положения нижних уровней ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ и ${}^{4}I_{15/2}$ одинаковы для Nd_2BaNiO_5 и LaCl₃, в то время как вышележащие уровни в Nd_2BaNiO_5 смещены в сторону меньших энергий по отношению к LaCl₃. Такой нефелоксетический сдвиг [20,21] обусловлен большим перекрытием волновых функций возбужденных состояний Nd^{3+} с волновыми функциями лигандов в Nd_2BaNiO_5 .

В кристаллическом поле с локальной симметрией C_{2v} каждый уровень свободного иона Nd³⁺, характеризуемый значением *J* полного момента, расщепляется на J + 1/2 крамерсовых дублета (см. схему на рис. 3). Все спектры могут быть проанализированы в рамках единственного неодимового центра. Чтобы облегчить анализ штарковских расщеплений, мы использовали разбавленное соединение Nd_{0.1}Y_{1.9}BaNiO₅, которое не упорядочивается по крайней мере до 10 К и спектр которого не усложнен обменными расщеплениями. Спектры пропускания обоих соединений сравниваются на рис. 4. Энергии штарковских подуровней мультиплетов иона Nd³⁺, найденные по спектрам, представлены в таблице. Штарковские подуровни основного состояния ${}^{4}I_{9/2}$ были определены по спектрам при повышенных температурах (рис. 5). Интенсивности линий, разгорающихся при повышении температуры, коррелируют с заселенностью возбужденных штарковских подуровней основного состояния (рис. 6). Полученные значения энергий нижайших уровней (140, 190, 302 cm⁻¹) находятся в хорошем согласии с нейтронными данными (144, 192, $304 \,\mathrm{cm}^{-1}$) [15].

Экспериментально определенные положения 54 штарковских уровней иона Nd³⁺ в Nd₂BaNiO₅ могут быть использованы для анализа в рамках теории кристаллического поля.

Обменные расщепления в спектрах Nd₂BaNiO₅. Модель молекулярного поля

В магнитоупорядоченном состоянии магнитные взаимодействия снимают крамерсово вырождение ионов Nd³⁺, что приводит к расщеплению спектральных линий (см. схему на рис. 3). На рис. 7 показано изменение одной из линий при понижении температуры. Появляющееся при ~ 50 К расщепление увеличивается, линии сужаются, так что при $T \leq 35$ К отчетливо видны все четыре компоненты расщепленной линии, при

Рис. 7. Линия IA (рис. 4, *d*) при различных температурах. Обозначения соответствуют схеме на рис. 3.

1444

Рис. 8. Температурные зависимости расщепления Δ основного состояния иона Nd³⁺ (1), энергии *Е* моды 4 meV, наблюдавшейся в спектре нейтронного рассеяния (2) и магнитного момента $m_{\rm Ni}$ (3). Зависимость $\Delta(T)$ получена из спектроскопических измерений данной работы, E(T) и $m_{\rm Ni}(T)$ — из экспериментов по рассеянию нейтронов [14].

этом низкочастотные компоненты "вымораживаются". Анализируя спектры, можно определить возникающие при магнитном упорядочении в кристалле обменные расщепления крамерсовых дублетов, соответствующих начальному и конечному уровням оптического перехода. Найденные по спектрам расщепления при T = 5 К приведены в таблице.

На рис. 8 показана температурная зависимость расщепления основного состояния $\Delta(T)$, а также температурные зависимости энергии моды 4 meV, зарегистрированной в спектре нейтронного рассеяния [14], и магнитного момента никелевой подсистемы $m_{\rm Ni}(T)$, определенного из нейтронных данных [14]. Из рис. 8 однозначно следует, что мода 4 meV, наблюдавшаяся в экспериментах по рассеянию нейтронов в Nd₂BaNiO₅ и первоначально сопоставленная со штарковским уровнем иона Nd³⁺ [22], в действительности отвечает переходу между компонентами основного крамерсова дублета Nd³⁺, расщепленного магнитным взаимодействием в магнитоупорядоченном состоянии, т.е. соответствует перевороту неодимового магнитного момента, как и предполагалось в работе [12].

Для $T < 0.9T_N$ величина расщепления основного состояния РЗ-иона в Nd₂BaNiO₅ пропорциональна магнитному моменту никелевой подсистемы (рис. 8), так же как и в случае Er₂BaNiO₅ [11,18]. Это означает, что к данной системе применима модель молекулярного поля. РЗ-ионы ведут себя так, как если бы они находились в некотором эффективном магнитном поле $B_{\rm eff}$, созданном упорядоченной никелевой подсистемой [11,17,18]. В рамках этого приближения можно записать

$$\Delta(T) = 2m_{\rm Nd}^{(0)} B_{\rm eff}(T), \qquad (1)$$

$$B_{\rm eff}(T) = \lambda m_{\rm Ni}(T). \tag{2}$$

Здесь $m_{\rm Nd}^{(0)}$ — магнитный момент одного иона Nd³⁺ в основном состоянии, λ — константа молекулярного

поля. Взяв экспериментальные величины $m_{\rm Nd}^{(0)} = 2.65 \mu_{\rm B}$ и $m_{\rm Ni}^{(0)} = 1.6 \mu_{\rm B}$ из работы по рассеянию нейтронов [9], при аппроксимации нашей экспериментальной зависимости $\Delta(T)$ с помощью уравнений (1) и (2) мы получили $\lambda = 7.61 \mu_{\rm B}$. Это значение достаточно хорошо согласуется с величиной, полученной в работе [17] ($\lambda = 7.51 \mu_{\rm B}$) из анализа магнитной восприимчивости Nd₂BaNiO₅.

При $T > T_N$ расщепление спектральных линий не исчезает полностью. Оставшееся расщепление связано с ближним порядком. Ранее мы предположили, что температура магнитного упорядочения может быть найдена по точке перегиба на зависимости $\Delta(T)$ [23,24]. Сравнение оптических и нейтронных данных для Nd₂BaNiO₅ (рис. 8) подтверждает это предположение. На основании спектроскопических данных мы получили $T_N = 47.5 \pm 1$ К, что согласуется со значением $T_N = 48$ К, определенным в работах по дифракции нейтронов [9,16].

Магнитный момент неодимовой подсистемы в магнитоупорядоченном состоянии Nd, BaNiO₅

Возбужденные штарковские подуровни основного мультиплета (140, 190 ст⁻¹ и т.д.; см. таблицу) практически не заселены при $T < T_N$. Поэтому только основной крамерсов дублет вносит вклад в магнитный момент $m_{\rm Nd}$ неодимовой подсистемы, и можно записать

$$m_{\rm Nd}(T) = m_{\rm Nd}^{(0)} \frac{n_1 - n_2}{n_1 + n_2} = m_{\rm Nd}^{(0)} \, \text{th} \, \frac{\Delta(T)}{2kT}.$$
 (3)

Здесь $m_{\rm Nd}(T)$ — магнитный момент на один ион Nd³⁺, n_1 и $n_2 = n_1 \exp(\Delta/kT)$ — соответственно заселенности нижнего и верхнего подуровней основного крамерсова дублета.

Рис. 9. Температурные зависимости магнитного момента Nd^{3+} в магнитоупорядоченном состоянии Nd_2BaNiO_5 , полученные из спектроскопических данных по формуле (3) (1) и из данных по нейтронному рассеянию (2).

На рис. 9 показана зависимость $m_{\rm Nd}(T)$, вычисленная по формуле (3) с использованием спектроскопических данных по расщеплению основного состояния $\Delta(T)$ и измеренная в нейтронном эксперименте [14]. Хорошее согласие подтверждает применимость спектроскопической методики для исследования магнитных свойств цепочечных никелатов.

Наши данные дают также прямое обоснование подхода (впервые предложенного в нашей работе [11]), примененного в [17] для вычисления магнитной восприимчивости $\chi(T)$ Nd₂BaNiO₅, и показывают, что максимум на зависимости $\chi(T)$ при температуре $T_{\rm max} \sim 26\,{
m K}$ (согласно [11], 30 К), существенно меньшей, чем температура магнитного упорядочения $T_N = 47.5 \, \text{K}$, связан с опустошением верхней компоненты основного крамерсова дублета иона Nd³⁺, расщепленного Nd-Ni-взаимодействиями в магнитоупорядоченном состоянии Nd₂BaNiO₅. С помощью этого подхода можно оценить температуру такого максимума по формуле $kT_{\rm max} = 0.65\Delta(0)$, не проводя вычислений всей зависимости $\chi(T)$ [23]. Подставляя найденные по спектрам значения $\Delta(0) = 32 \, {\rm cm}^{-1}$, получаем оценку $T_{\rm max} = 30 \, {\rm K}$, что близко к наблюдаемому значению.

Список литературы

- [1] F.D.M. Haldane. Phys. Rev. Lett. 50, 15, 1153 (1983).
- [2] W.J.L. Buyers, R.M. Morra, R.L. Armstrong, M.J. Hogan, P. Gerlach, K. Hirakawa. Phys. Rev. Lett. 56, 4, 371 (1986).
- [3] Z. Tun, W.J.L. Buyers, A. Harrison, J.A. Rayne. Phys. Rev. B 43, 16, 13 331 (1991).
- [4] S. Schiffler, H. Müller-Buschbaum. Z. Anorg. Allg. Chem. 532, 10 (1986).
- [5] E. García-Matres, J.L. Martínez, J. Rodríguez-Carvajal. J. Solid State Chem. 103, 322 (1993).
- [6] K. Kojima, A. Keren, L.P. Le, G.M. Luke, B. Nachumi, W.D. Wu, Y.J. Uemura, K. Kiyono, S. Miyasaka, H.Takagi, S. Uchida. Phys. Rev. Lett. 74, 17, 3471 (1995).
- [7] J. Darriet, L.P. Regnault. Solid State Commun. 86, 7, 409 (1993).
- [8] Guangyong Xu, J.F. Ditusa, T. Ito, K. Oka, H. Takagi, C. Broholm, G. Aeppli. Phys. Rev. B 54, 10, 6827 (1996).
- [9] E. García-Matres, J.L. Martínez, J. Rodríguez-Carvajal. Eur. Phys. J. B 24, 59 (2001).
- [10] K.A. Alonso, J. Amador, J.L. Martinez, I. Rasines, J. Rodríguez-Carvajal, R. Saez-Puche. Solid State Commun. 76, 4, 467 (1990).
- [11] G.G. Chepurko, Z.A. Kazei, D.A. Kudrjavtsev, R.Z. Levitin, B.V. Mill, M.N. Popova, V.V. Snegirev. Phys. Lett. A 157, *1*, 81 (1991).
- [12] A. Zheludev, J.M. Tranquada, T. Vogt, D.J. Buttrey. Phys. Rev. B 54, 9, 6437 (1996).
- [13] T. Yokoo, A. Zheludev, M. Nakamura, J. Akimitsu. Phys. Rev. B 55, 17, 11516 (1997).
- [14] T. Yokoo, S.A. Raymond, A. Zheludev, S. Maslov, E. Ressouche, I. Zaliznyak, R. Erwin, M. Nakamura, J. Akimitsu. Phys. Rev. B 58, 21, 14424 (1998).
- [15] A. Zheludev, S. Maslov, T. Yokoo, J. Akimitsu, S. Raymond, S.E. Nagler, K. Hirota. Phys. Rev. B 61, 17, 11601 (2000).

- [16] A. Zheludev, J.P. Hill, D.J. Buttrey. Phys. Rev. B 54, 10, 7216 (1996).
- [17] E. García-Matres, J.L. García-Munos, J.L. Martínez, J. Rodríguez-Carvajal. J. Magn. Magn. Mater. 149, 363 (1995).
- [18] M.N. Popova, S.A. Klimin, E.P. Chukalina, B.Z. Malkin, R.Z. Levitin, B.V. Mill, E. Antic-Fedancev. Phys. Rev. B 68, 15, 155 103 (2003).
- [19] G.H. Dieke. Spectra and Energy Levels of Rare Earth Ions in Crystals. Interscience, N.Y. (1968). P. 142.
- [20] P. Caro, O. Beaury, E. Antic. J. de Phys. 37, 671 (1976).
- [21] E. Antic-Fidancev, M. Lemaitre-Blaise, P. Caro. New J. Chem. 11, 6, 467 (1987).
- [22] A. Zheludev, J.M. Tranquada, T. Vogt, D.J. Buttrey. Phys. Rev. B 54, 10, 7210 (1996).
- [23] M.N. Popova. Proc. SPIE 2706, 182 (1996).
- [24] M.N. Popova. J. Alloys Comp. 275–277, 142 (1998).