Локальная кристаллическая структура примесных ионов Zn²⁺ в кристалле LiF: U, Zn

© В.А. Чернышев, А.В. Абросимов, Т.С. Королева*, А.Н. Черепанов**

Уральский государственный университет, 620083 Екатеринбург, Россия * Институт физики Национальной академии наук Киргизии, 720071 Бишкек, Киргизия ** Уральский государственный технический университет (УПИ),

620002 Екатеринбург, Россия

E-mail: tch@dpt.ustu.ru

Представлены результаты расчета структуры решетки кристалла LiF:U, Zn вблизи локального центра примесного иона Zn²⁺, полученные в рамках оболочечной модели и приближения парных потенциалов.

Работа выполнена в рамках программы "Университеты России" (грант УР.02.01.023) при поддержке Уральского научно-образовательного центра "Перспективные материалы" REC-005 (грант EK-005-X1), Российского фонда фундаментальных исследований (грант № 04-02-16427), гранта НАТО NPST. EAP. CLG 980674 и Центра детекторных технологий.

1. Введение

Кристаллы фторида лития, активированного ураном (LiF:U, Me, где Me=Zn, Cu, Ti, Sr, Sc и др.), на протяжении многих лет остаются актуальными объектами исследования [1,2]. На их основе предложен ряд сцинтилляционных устройств и радиационных детекторов. Основным компонентом центров свечения в кристаллах LiF:U, Me является ион U⁶⁺ в виде комплекса UO₅F [2] или UO₆ [1]. Кислород оказывается необходимым компонентом сложного уранового центра свечения. Комплексы UO₆ стабилизируются, а в ряде случаев сенсибилизируются соактивирующими примесями, такими как Zn, Cu, Sr, Ti и др., поэтому в целом центр свечения в LiF:U, Me представляет собой сложный кластер.

Для иона U⁶⁺ в решетке LiF характерна интенсивная люминесценция со спектром свечения в зеленой области. Наблюдаются десятки линий, связанных с ионами U⁶⁺. Примесные ионы-соактиваторы влияют в основном на перераспределение интенсивностей этих линий. Характерных полос для большинства из упомянутых выше ионов-соактиваторов в спектрах свечения LiF:U, Ме не наблюдается. Исключение составляют ионы Ti⁴⁺ [3], Cu⁺ [3], Zn²⁺ [4]. Первые два типа ионов проявляются в виде слабых широких полос в области 460–500 nm, а ионы цинка — в виде узкой линии 487 nm. Это обстоятельство позволяет выделить ионы Zn²⁺ из числа других ионов-соактиваторов в системе LiF:U, Ме как проявляющие свою индивидуальность в спектрах.

В настоящей работе рассмотрена локальная кристаллическая структура примесного центра Zn^{2+} , выделяемого в качестве регионального из сложного кластерного образования, включающего ион Zn^{2+} и ион U^{6+} с их ближайшим окружением (несколько сот ионов).

2. Методика и результаты расчета

Кристаллическая структура ионного кристалла, состоящего из ионов с заполненными оболочками, может быть адекватно описана в приближении парных взаимодействий с использованием оболочечной модели [5]. В настоящей работе в рамках такой модели был проведен расчет локальной кристаллической структуры примесного центра LiF: Zn²⁺.

Энергия парных взаимодействий может быть представлена в виде

$$E_{ij} = A \exp(-r_{ij}/\rho) - Cr_{ij}^{-6} + q_i q_j/r_{ij}, \qquad (1)$$

где два первых слагаемых описывают близкодействующее взаимодействие, а именно близкодействующее отталкивание (в форме Борна–Майера), и взаимодействие Ван-дер-Ваальса, а последнее слагаемое определяется кулоновским взаимодействием. Величины A, ρ и C — параметры модели.

При расчетах катионы Li⁺ считались жесткими, анионы F⁻ рассматривались в оболочечной модели. При этом заряды ионов соответствовали ионной связи, заряд Li был принят равным +e, сумма зарядов остова и оболочки иона F⁻ составляла -e. В рамках оболочечной модели взаимодействие остова и оболочки иона F⁻ записывается в виде

$$E_{\rm core-shell} = \frac{1}{2} k r^2, \qquad (2)$$

где *r* — смещение оболочки относительно остова, *k* — параметр модели. Близкодействующее взаимодействие между катионами не учитывалось вследствие значительной удаленности их друг от друга.

Расчет был проведен с использованием программы GULP [6]. При этом учитывались параметры взаимодействий, заряды остовов и оболочки F, величины которых приведены в табл. 1. Кулоновское взаимодействие

	Взаимодействие остов-остов					
Ионы	A, eV	$ ho, { m \AA}$	$C, eV \cdot Å^6$	Радиус действия, Å		
Li^+-F^-	443.830	0.2714	0.00	10.0		
$F^ F^-$	911.690	0.2707	13.80	10.0		
$Zn^{2+}-F^{-}$	1482.300	0.2664	0.00	10.0		
	Взаимодействие остов-оболочка					
	k, eV·Å ⁻²	Заряд о	оболочки, <i>е</i>	Заряд остова, е		
$F_{core} - F_{shell}$	24.36	_	1.378	0.378		

Таблица 1. Параметры модели

Таблица 2. Постоянная решетки *a*, упругие постоянные *C_{ij}* и диэлектрические проницаемости *є* кристалла LiF

	a,Å	C ₁₁ , GPa	C_{12} , GPa	C ₄₄ , GPa	ε_{∞}	ε_0
Расчет	4.024	125	58.9	58.9	8.5	1.9
Эксперимент	4.028	112	63.2	45.6	8.9	1.9

в программе GULP рассчитывается методом Эвальда. Использование этих параметров для расчета кристаллической структуры чистого кристалла LiF дает хорошие результаты (табл. 2).

Примесный ион Zn²⁺ замещает катион Li⁺ в кристалле-матрице (рис. 1). При этом образуется избыточный положительный заряд. В данных расчетах компенсация заряда считалась нелокальной.

В программе GULP для расчета кристаллической структуры примесного центра используется метод Мотта–Литлтона. При расчетах регион 1, включающий примесный ион и окружающие его ионы, имел радиус 10 Å и содержал 485 ионов. Радиус региона 2, в котором релаксация ионов ограничена, составлял 20 Å. Координаты ионов в регионе 1 определяются из условия минимума энергии кристаллической решетки. Расчеты показали, что замещение иона Li⁺ ионом Zn²⁺ с близким радиусом (0.76 и 0.74 Å [7]), но с избыточным положительным зарядом вызывает значительное искажение кристаллической решетки вблизи примесного иона. На рис. 2 приведены величины радиальных смещений ионов вблизи Zn²⁺. Здесь удобно использовать понятие орбиты — группы ионов, преобразующихся друг через

Таблица 3. Координаты ионов орбит в чистой и искаженной решетках LiF (в Å)

Орбита Ти ион	Тип	LiF (чистая решетка)		LiF:Zn ²⁺ (искаженная решетка)			Число ионов		
	ионов	x	у	z	x	У	z	в орбите	
	Zn	0	0	0	0	0	0		
1	F	2.0119	0	0	2.0046	0	0	6	
2	Li	2.0119	2.0119	0	2.1045	2.1045	0	12	
3	F	2.0119	2.0119	2.0119	1.9948	1.9948	1.9948	8	
4	Li	4.0238	0	0	4.0658	0	0	6	
5	F	4.0238	2.0119	0	4.0295	2.0108	0	24	
6	Li	4.0238	2.0119	2.0119	4.0521	2.0257	2.0257	24	
7	Li	4.0238	4.0238	0	4.0554	4.0554	0	12	
8	F	4.0238	4.0238	2.0119	4.0189	4.0189	2.0086	24	
9	F	0	6.0358	0	0	6.0367	0	6	
10	Li	6.0358	2.0119	0	6.0546	2.0188	0	24	
11	F	6.0358	2.0119	2.0119	6.0347	2.0119	2.0119	24	
12	Li	4.0238	4.0238	4.0238	4.0347	4.0347	4.0347	8	
13	F	6.0358	4.0238	0	6.0364	4.0253	0	24	
14	Li	6.0358	4.0238	2.0119	6.0486	4.0309	2.0181	48	
15	Li	0	8.0477	0	0	8.0576	0	6	
16	F	6.0358	4.0238	4.0238	6.0342	4.0236	4.0236	24	
17	F	2.0119	8.0477	0	2.0115	8.0458	0	24	
18	Li	8.0477	2.0119	2.0119	8.0570	2.0153	2.0153	24	
19	Li	6.0358	6.0358	0	6.0462	6.0462	0	12	
20	F	6.0358	6.0358	2.0119	6.0325	6.0325	2.011	24	
21	Li	8.0477	4.0238	0	8.0587	4.0292	0	24	
22	F	8.0477	4.0238	2.0119	8.0436	4.0218	2.0113	48	
23	Li	6.0358	6.0358	4.0238	6.0439	6.0439	4.0300	24	
24	Li	8.0477	4.0238	4.0238	8.0605	4.0304	4.0304	24	

Рис. 1. Примесный центр Zn^{2+} в кристалле LiF.

Рис. 2. Радиальные смещения орбит вблизи примесного иона. Положительный знак величины *dR* соответствует уменьшению радиальной координаты (смещению к примесному иону).

друга при всех операциях симметрии точечной группы примесного кристалла. В данном случае каждая из первых восьми координационных сфер вокруг примесного иона представляет собой одну орбиту, а более далекие координационные сферы могут состоять из двух орбит.

Первая орбита (шесть ионов F) сжимается (рис. 1), следующая за ней орбита (двенадцать ионов Li⁺) расширяется. Она испытывает наиболее сильные смещения (около 0.13 Å) вследствие отталкивания от примеси с избыточным положительным зарядом. После седьмой орбиты (рис. 2) радиальные смещения становятся малыми и не превышают 0.02 Å. Координаты ионов орбит в чистой и искаженной решетках приведены в табл. 3 (даны координаты одного иона из каждой орбиты).

Как показывают расчеты, радиальные смещения орбит вблизи примесного иона Zn^{2+} стабилизируются начиная с восьмой-девятой орбиты, т.е. на расстоянии $\sim 4-6\,{\rm \AA}$ от центрального иона Zn^{2+} (табл. 3). Это позволяет

предположить, что ядром регионального примесного центра Zn^{2+} могут быть 116–122 иона его ближайшего окружения, расположенные на этих восьми–девяти орбитах. Данные орбиты можно условно считать границей между устойчивым Zn^{2+} -регионом и регионом, образованным ионом $(UO_6)^{6-}$, обеспечивающим нелокальную компенсацию избыточного положительного заряда иона Zn^{2+} .

Список литературы

- [1] W.A. Runciman. Nature 175, 1082 (1955).
- [2] А.А. Каплянский, Н.А. Москвин, П.П. Феофилов. Опт. и спектр. 16, 4, 619 (1964).
- [3] М.М. Кидибаев. Радиационно-стимулированные процессы в кристаллах (Li, Na)F–U, Ме. УГТУ, Екатеринбург (1999). 220 с.
- [4] Т.С. Королева. Автореф. канд. дис. Каракол (1996).
- [5] W.A. Runciman, E.Y. Wong, J. Chem. Phys. 71, 1838 (1979).
- [6] C. Catlow, M. Norgett. J. Phys. C: Solid State Phys. 6, 1325 (1973).
- [7] C. Catlow, A. Chadwick, J. Corish. J. Solid State Chem. 48, 65 (1983).