02;04;07;12

Оптические характеристики плазмы лазерной эрозии серебра

© А.К. Шуаибов

Ужгородский национальный университет E-mail: ishev@univ.uzhgorod.ua

Поступило в Редакцию 14 апреля 2001 г.

Представлены результаты исследования околопорогового излучения лазерной плазмы серебра в области 220–600 nm. Плазма формировалась при действии лазерного излучения с $\lambda = 1.06\,\mu m$ мощностью $(1\!-\!3)\cdot 10^8\,{\rm W}\cdot{\rm cm}^{-2}$ в точке фокусировки на поверхности массивной мишени.

Установлено, что основными в спектре излучения являются резонансные линии атомов серебра ($\lambda = 328.1$; 338.8 nm AgI). В видимой области наиболее интенсивными были спектральные линии 520.9 и 546.5 nm AgI. Узким местом рекомбинационного потока, который заселял верхние энергетические состояния атомов серебра, является уровень $7d^2D_{5/2}$ AgI. Основной поток реакции рекомбинации Ag⁺ + 2 $e \rightarrow$ Ag^{*} + e последовательно проходит через следующие энергетические уровни AgI: $7d \rightarrow 6d \rightarrow 5d \rightarrow 5s$. Полученные результаты могут использоваться для повышения качества тонких пленок серебра и оптимизации напыления пленок сложного состава из кристаллов типа AgGa(Al, In)S(Se)₂.

Серебро широко используется в современной микроэлектронике для получения тонких пленок, а также является важным компонентом поликристаллической шихты на основе соединений $AgGa(Al,In)S(Se)_2$, которые, как и соединения $CuInS(Se)_2$ [1], могут применяться для изготовления рабочих элементов солнечных батарей. Для получения качественных пленок серебра или многокомпонентных соединений на основе серебра важное значение имеют параметры соответствующей лазерной плазмы. Спектры излучения многокомпонентной лазерной

1

плазмы являются достаточно сложными и малоизученными, особенно при околопороговом действии лазерного излучения на мишени [2,3], что требует количественного исследования оптических характеристик лазерной плазмы на основе отдельных составляющих кристаллических мишеней. Оптические характеристики лазерной плазмы Cu, Ga и In представлены в наших работах [4–6]. Подобные данные для лазерной плазмы серебра отсутствуют.

В данной статье представлены результаты исследования излучения лазерной плазмы серебра, формируемой при помощи YAG : Nd^{3+} лазера с мощностью в точке фокусировки $(1-3) \cdot 10^8 \text{ W} \cdot \text{cm}^{-2}$ и длительностью импульсов генерации 20 ns.

Методика, техника и условия эксперимента были аналогичными работам [4–6]. В эксперименте использовалась массивная мишень из серебра особой чистоты, которая устанавливалась в вакуумную камеру с остаточным давлением воздуха P = 3-5 Ра. Расшифровка спектров излучения проводилась по данным работ [7–9].

На рисунке приведен спектр излучения плазмы лазерной эрозии серебра. В таблице представлены результаты расшифровки спектра:

Спектр излучения ядра лазерной плазмы серебра, зарегистрированный из точки, удаленной от поверхности мишени на 1 mm.

Письма в ЖТФ, 2001, том 27, вып. 19

λ ,nm	Переход, AgI	$E_0, {\rm cm}^{-1}$	$E_1, {\rm cm}^{-1}$	J/k_{λ} , a.u.	$\Delta J/k_{\lambda}$, %	$Q, 10^{-18}, \mathrm{cm}^{-18}$
328.1	$5s^2S_{1/2}-5p^2P_{3/2}$	0	30473	1.00	39	1020
338.3	$5s^2S_{1/2}-5p^2P_{3/2}$	0	29552	0.68	25	340
381.1	$5p^2P_{3/2}-7d^2D_{5/2}$	30473	56706	0.03	1	11.7
381.2	$5p^2P_{1/2}-7d^2D_{3/2}$	30473	56700			
405.5	$5p^2P_{1/2}-6d^2D_{3/2}$	29552	54203	0.07	3	5.8
421.1	$5p^2P_{3/2}-6d^2D_{5/2}$	30473	54214	0.15	6	9.2
421.3	$5p^2P_{3/2}-6d^2D_{3/2}$	30473	54203			
520.9	$5p^2P_{1/2}-5d^2D_{3/2}$	29552	48744	0.22	9	17.0
546.5	$5p^2P_{3/2}-5d^2D_{5/2}$	30473	48764	0.45	17	20.0

Распределение интенсивности излучения ядра лазерной плазмы серебра

 J/k_{λ} — относительная интенсивность спектральной линии, k_{λ} относительная спектральная чувствительность системы "монохроматор + Φ ЭУ", $\Delta J/k_{\lambda}$ — отношение интенсивности отдельной линии излучения (за вычетом непрерывного излучения) к суммарной интенсивности всех регистрируемых спектральных линий серебра. В обзорном спектре наблюдались исключительно спектральные линии атомов серебра. Линейчатое излучение лазерной плазмы серебра наблюдалось на фоне слабого непрерывного излучения (см. рисунок). Наиболее интенсивным было излучение на резонансных переходах атома серебра $(\lambda = 328.1; 338.3 \,\mathrm{nm \, AgI})$. В видимой области спектра по интенсивности выделялись спектральные линии 520.9 и 546.5 nm AgI. Из-за значительного самопоглощения резонансного излучения AgI диагностика параметров лазерной плазмы серебра может быть выполнена по хорошо разрешенным и сравнительно интенсивным линиям в видимом диапазоне. Сравнение распределения интенсивности излучения лазерной плазмы с величинами эффективных сечений возбуждения спектральных линий AgI электронным ударом [7] показало, что они не коррелируют между собой. Как и для лазерной плазмы на основе Al, Ga и In [4-6], для лазерной плазмы серебра более вероятным является рекомбинационный механизм заселения возбужденных состояний AgI (Ag²⁺+2 $e \rightarrow$ Ag^{*}+e). Узким местом рекомбинационного потока в данном случае является энергетический уровень $AgI(7d^2D_{5/2})$. Как следует из таблицы, интенсивности излучения AgI последовательно увеличиваются с уменьшением энергии верхнего состояния от узкого места до резонансных

1* Письма в ЖТФ, 2001, том 27, вып. 19

состояний атома серебра. Поэтому рекомбинационный поток в условиях настоящего эксперимента распространяется по следующей последовательности энергетических уровней AgI: $7d \rightarrow 6d \rightarrow 5d \rightarrow 5s$.

Таким образом, показано, что при действии излучения неодимового лазера мощностью $(1-3) \cdot 10^8 \,\mathrm{W} \cdot \mathrm{cm}^{-2}$ на массивную мишень из серебра, установленную в вакууме, основной вклад в спектр линейчатого излучения лазерной плазмы вносят резонансные линии AgI; узким местом рекомбинационного потока является уровень $7d^2D_{5/2}$ с энергией $\varepsilon = 56\,706\,\mathrm{cm}^{-1}$; для диагностики лазерной плазмы серебра методами эмиссионной спектроскопии могут быть использованы спектральные линии $\lambda = 520.9$ и 546.5 nm AgI.

Выражаю благодарность А.И. Дащенко за помощь в проведении эксперимента.

Список литературы

- [1] Khare N., Razzini G., Bicelli P. // Thin Solid. Films. 1990. V. 186. P. 113–119.
- [2] Котлярчук Б.К., Попович Д.И., Пентко В.Я. // ЖТФ. 1987. Т. 57. В. 9. С. 1824–1827.
- [3] Kacher I.E., Shuaibov A.K., Dashchenko A.I., Rigan M.Yu. // Abstr. Of V Int. Conf. "Material science and material properties for infrared optoelectronics". Kyiev, Ukraine, 2000. P. 103.
- [4] Шуаибов А.К., Дащенко А.И., Шевера И.В. // Письма в ЖТФ. 2000. Т. 26.
 В. 18. С. 57-62.
- [5] Shuaibov A.K., Shimon L.L., Daschenko A.J., Chuchman M.P. // Uzh. Univ. Scient. Herald. Ser. Phys. 2000. Issue 8. Part 2. P. 348–352.
- [6] Шуаибов А.К., Шимон Л.Л., Дащенко А.И., Шевера И.В., Чучман М.П. // Физика плазмы. 2001. Т. 27. № 1. С. 85–88.
- [7] Красавин А.Ю., Кученев А.Н., Смирнов Ю.М. // Оптика и спектроскопия. 1983. Т. 54. В. 1. С. 20–24.
- [8] Зайдель А.Н., Прокофьев В.К., Райский С.М. и др. // Таблицы спектральных линий. М., 1969. 782 с.
- [9] Смирнов Ю.М. // ЖТФ. 1999. Т. 69. В. 2. С. 6-10.

Письма в ЖТФ, 2001, том 27, вып. 19