Ионолюминесценция кластеров Eu²⁺-Eu³⁺ в монокристаллах NaF: Eu

© Б.К. Джолдошов, М.М. Кидибаев, Т.С. Королева*, А.Н. Черепанов**, Д.В. Райков**, В.Ю. Иванов**, О.В. Рябухин**

Иссык-Кульский государственный университет, 722360 Каракол, Киргизия * Институт физики Национальный академии наук Киргизии, 720071 Бишкек, Киргизия ** Уральский государственный технический университет (УПИ), 620002 Екатеринбург, Россия

E-mail: tch@dpt.ustu.ru

При радиационно-примесной модификации кристаллов NaF:Eu в их приповерхностных слоях формируются оптически активные планарные гетероструктуры со сложным набором центров свечения, включающим в себя, в частности, кластерные образования типа $Eu^{2+}-Eu^{3+}$. Центры $Eu^{2+}-Eu^{3+}$ имеют полосы свечения при 409 и 442 nm, обусловленные ионами Eu^{2+} в неэквивалентных кристаллографических позициях, а также полосу свечения при 610 nm, связанную с ионами Eu^{3+} . Кроме того, для облученных образцов NaF:Eu наблюдается широкая полоса люминесценции с общим максимумом при 506 nm, обусловленная центрами окраски $F_2 + F_3^+$ -типа.

Работа выполнена в рамках Киргизско-Российского проекта МНТЦ № КК-994 и поддержана грантом "Университеты России" (УР.02.01.023), грантом НАТО N PST.EAP.CLG 980674 и грантом Уральского научно-образовательного центра "Перспективные материалы" (ЕК-005-Х1).

1. Введение

Начатые Рансименом [1], Феофиловым и Каплянским [2] исследования оптико-люминесцентных свойств кристаллов NaF: U нашли свое продолжение в работах [3–9]. Были обнаружены эффективные соактиваторы для примесных ионов урана на основе d- и f-элементов, установлена невысокая изоморфная емкость кристаллов NaF по отношению к ионам редкоземельных элементов (РЗЭ), таким как Eu³⁺, Sm³⁺, Gd³⁺, Ce³⁺ и Тb³⁺ [5,6,8]. Изучены их спектры фотолюминесценции и спектры возбуждения, установлена электронная структура центров свечения и предложены их пространственные модели [1-8]. Так, по данным [5,6] спектр фотолюминесценции кристаллов NaF: Еи сосредоточен в области 500-700 nm. Максимум спектра расположен при 608.7 nm (переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ в ионе Eu³⁺), наблюдаются также линии 612.8, 614.9, 624.6, 635.6, 640.6, 649.6 и 654.1 nm. Установлено наличие в активированных кристаллах NaF парных центров типа Eu³⁺-Ce³⁺, Sm³⁺-Ce³⁺ и Ho³⁺-Ho³⁺ [8]. Проведенные нами исследования тех же, что и работе [8], кристаллов NaF: Eu с применением радиационно-примесной модификации кристаллов и с использованием возбуждения более высокой плотности (пучков ионов азота) позволили обнаружить полосы свечения, связанные с кластерами $Eu^{2+}-Eu^{3+}$, на фоне интенсивных полос центров окраски, наведенных радиацией. Результаты этих исследований приведены в настоящей работе.

2. Образцы и методика измерений

Исследовались образцы кристаллов NaF: Eu с содержанием европия (Eu_2O_3) в шихте до 0.01%, выращенные на воздухе в платиновых тиглях методом Стокбаргера

и переданные нам В.Ф. Писаренко. Спектры поглощения образцов измерялись с помощью спектрофотометра Helios Alfa. Образцы облучались ионами азота с энергией 10 MeV при 300 К. Спектры ионолюминесценции образцов NaF: Еu измерялись с помощью установки, созданной на базе циклотрона Уральского государственного технического университета. Установка имеет камеру облучения и систему регистрации, состоящую из полихроматора фирмы Oriel и ПЗС-линейки. Поверхностные слои образцов в процесе их облучения (флюенс доходил до 10¹⁵ cm⁻²) окрашивались.

3. Результаты и обсуждение

Спектры поглощения исходных образцов NaF: Еu и тех же образцов, облученных ионами азота (за время измерения спектров ионолюминеценции), приведены на рис. 1. Исходные кристаллы прозрачны во всем видимом и ближнем ИК диапазонах. Примесь Eu в кристаллах NaF фиксировалась нами по полосе поглощения в области 295–305 nm, которая связывается с известной полосой переноса заряда в комплексе Eu³⁺–O²⁻ [6,8]. В спектре поглощения кристаллов NaF: Eu, облученных ускоренными пучками ионов азота, доминируют полосы, связанные с наведенными радиацией центрами окраски: при 340 nm (*F*-центр) и в районе 506 nm (*F*₂ + *F*₃⁺-центры).

В спектре ионолюминесценции кристаллов NaF: Eu (рис. 2) наблюдается серия полос собственной и примесной люминесценции. Слабая УФ-полоса в области 275–330 nm с максимумами около 300 nm совпадает по положению с полосой переноса заряда комплекса $Eu^{3+}-O^{2-}$, проявляющейся в спектрах поглощения (рис. 1), а также с известной полосой Фишера, принадлежащей ионам O^{2-} и расположенной при 285 nm.

Рис. 1. Спектры поглощения необлученного (1) и облученного (2) кристалла NaF: Eu.

Рис. 2. Спектр ионолюминесценции кристаллов NaF: Eu.

Рис. 3. Модели парных центров $Eu^{2+}-Eu^{3+}$ в кристаллах NaF с компенсацией избыточного заряда за счет вакансий иона натрия (*a*) или за счет примесных ионов кислорода, замещающих ионы фтора (*b*). *1* — ион *F*⁻; *2* — ион Na⁺; *3* — вакансия иона Na⁺; *4* — ион O²⁻; *5* — ион Eu²⁺. *6* — ион Eu³⁺.

Полоса свечения 479 nm обусловлена полосой H-центра, связанного с междоузельным атомом галоида [3], а полоса 660 nm — свечением $F_2 + F_3^+$ -центров [3]. Наряду с этими полосами собственной люминесценции в спектре с максимумами в голубой области при 409 и 442 nm,

которые могут быть связаны с ионами Eu²⁺, находящимися в неэквивалентных кристаллографических позициях, и полоса в красной области спектра (~ 610 nm). Последняя по своему положению близка к полосе Eu^{3+} (608.4 nm), обнаруженной ранее в тех же самых кристаллах Писаренко [8]. Другие полосы ионов Eu³⁺, зарегистрированные в [8], из-за интенсивного свечения центров окраски проявляются весьма слабо. Появление полосы свечения ионов Eu²⁺ может быть связано с образованием ионов Eu^{2+} (по реакции $Eu^{3+} + e$) в приповерхностных слоях кристаллов NaF: Eu. В результате формируются гетеровалентные кластерные центры, в виде парных образований $Eu^{2+}-Eu^{3+}$, аналогичные известным парным центрам типа $Eu^{3+}-Ce^{2+}$, $Sm^{2+}-Ce^{2+}$ и Ho³⁺-Eu³⁺ в кристаллах NaF [8]. В качестве моделей парных центров в NaF и других щелочно-галоидных кристаллах автором [8] были предложены гетеровалентные кластерные центры, состоящие из пары разнотипных ионов РЗЭ, например Ho^{3+} и Eu^{2+} в NaBr [8]. По аналогии с такой моделью можно предложить две возможные модели гетеровалентного кластерного центра, состоящего из пары ионов Eu²⁺-Eu³⁺, с вакансионно-примесной компенсацией избыточного заряда активаторов Eu²⁺ и Eu³⁺ (рис. 3). Компенсация избыточного заряда кластера (Eu²⁺, Eu³⁺) в решетке NaF происходит либо за счет вакансионного механизма (рис. 3, *a*), либо за счет примесных ионов кислорода O^{2-} (рис. 3, *b*).

4. Заключение

Исследования радиационно-стимулированных эффектов в активированных ионами европия кристаллах NaF: U показали, что путем радиационно-примесной модифиации на базе этих кристаллов могут быть созданы активные приповерхностные планарные гетероструктуры с набором эффективных центров свечения в широком спектральном диапазоне (250–650 nm).

Авторы выражают благодарность Б.В. Шульгину за предложенную тему и полезные дискуссии.

Список литературы

- [1] W.A. Ranciman. Nature 175, 4468, 1082 (1955).
- [2] А.А. Каплянский, П.П. Феофилов. Опт. и спектр. 14, 664 (1963).
- [3] М.М. Кидибаев. Радиационо-стимулированные процессы в кристаллах (Li,Na)F–U,Me. УГТУ, Екатеринбург (1999). 220 с.
- [4] B.E. Bron, W.R. Heller. Phys. Rev. A 136, 1433 (1964).
- [5] В.Ф. Писаренко, Г.Д. Потапенко. ФТТ 14, 1361 (1972).
- [6] Г.Д. Потапенко, В.Ф. Писаренко. Спектроскопия кристаллов. Наука, Л. (1972). С. 193–195.
- [7] M. Shiber. Solid State Commun. 2, 261 (1964).
- [8] В.Ф. Писаренко. Докт. дис. Краснодар (1976). 334 с.
- [9] М.М. Кидибаев, Г.С. Денисов, А.А. Лозовских, Б.В. Шульгин, Д.В. Райков. Проблемы спектроскопии и спектрометрии. Межвуз. сб. тр. ГОУ УГТУ–УПИ, Екатеринбург (2002). В. 9. Ч. 2. С. 60–64.

1416